Skip to main content
Log in

Irreversibility analysis for ion size-dependent electrothermal transport of micropolar fluid in a microtube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper is devoted to studying the thermal characteristics of a completely developed electrokinetic flow of micropolar fluid through a cylindrical microtube when a static electric field is applied to it. Due to the constant heat flux applied, the microtube wall is supposed to get heated continuously. In addition to this, the local thermal equilibrium (LTE) model is taken into account while analyzing the heat transfer phenomenon. Under low Reynolds numbers and long channel length approximations, the partial differential equations that describe the electrothermal flow of non-Newtonian micropolar fluid have been switched to ordinary differential equations. The finite difference method (FDM) is used to calculate velocity and temperature with second-order precision using uniform grids along the microtube’s radial direction. The Cavalieri–Simpson technique for numerical integration was used to get numerical values for the mean velocity, bulk mean temperature, and mean entropy/Bejan number. Variations in the Nusselt number for changes in velocity and temperature fields and fluctuations in the Bejan number due to heat transfer irreversibility have been presented. Moreover, a comprehensive study has been performed to discuss the impact of pertinent factors on the optimization of the system’s irreversibility through mean entropy generation analysis. Thermofluidic micropumps for chemical mixing/separation and biomicrofluidic devices for diagnostics may be designed using the results obtained from this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\textbf{U}\) :

Velocity vector

\(\textbf{F}\) :

External body force vector

\(\textbf{W}\) :

Micro-rotational vector

\(\textbf{I}\) :

Gyration coefficient vector

\(\textbf{E}\) :

Electric field vector

T :

Temperature

R :

Radius of microtube

\({E}_0\) :

Characteristic electric field

p :

Pressure

t :

Time

k :

Thermal conductivity

e :

Protonic charge

n :

Micropolarity concentration parameter

\({n}_0\) :

Bulk ionic concentration

\({n}^\pm\) :

Ionic densities

a :

Micropolarity parameter

b :

Couple stress parameter

\({k}_{\mathrm{b}}\) :

Boltzmann constant

\({c}_\mathrm{p}\) :

Specific heat capacity

\({u}_{\mathrm{s}}\) :

Helmholtz–Smoluchowski velocity

\({q}_{\mathrm{w}}\) :

Heat flux

\({u}_{\mathrm{a}}^*\) :

Average/mean velocity

\({T}_{\mathrm{a}}\) :

Average/mean Temperature

\({T}_{\mathrm{m}}\) :

Bulk mean temperature

\({I}_{\mathrm{s}}^*\) :

Streaming current

\({I}_{\mathrm{c}}^*\) :

Conduction current

\({I}_{\mathrm{T}}^*\) :

Stern layer current

\(\text{Du}\) :

Dukhin number

\({T}_{\mathrm{s}}\) :

Microtube’s surface temperature

\(\text{Pe}\) :

Peclet number

\(\text{Br}\) :

Brinkman number

S :

Joule heat parameter

\(\text{Nu}\) :

Nusselt number

\(\text{Be}\) :

Bejan number

\(\rho\) :

Fluid density

\(\mu\) :

Fluid viscosity

\(\eta\) :

Material constant of fluid

\(\gamma\) :

Angular viscosity coefficient

\(\Phi\) :

Viscous dissipation factor

\(\Psi\) :

Electrical potential

\(\rho _\mathrm{e}\) :

Net ionic charge density

\(\wp\) :

Steric factor

\(\varsigma\) :

Ionic valency

\(\epsilon\) :

Medium permittivity

\(\lambda\) :

Electrokinetic parameter

\(\rho _\mathrm{e}\) :

Net charge density

\(\Gamma\) :

Velocity scale ratio

\(\psi ^*\) :

Impulsively produced electric potential

\(\zeta ^*\) :

Zeta potential

\(\beta ^*\) :

Slip length

\(\sigma _{\mathrm{S}}\) :

Stern layer electrical conductivity

\(\sigma _{\mathrm{B}}\) :

Bulk electrical conductivity

\(\sigma _\mathrm{e}\) :

Electrical conductivity of the fluid

\(\xi\) :

Conductivity parameter

\(\theta _{\mathrm{m}}\) :

Dimensionless bulk mean temperature

\(\Omega\) :

Temperature difference parameter

References

  1. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science. 1993;261:895–7.

    PubMed  CAS  Google Scholar 

  2. Manz A, Effenhauser CS, Burggraf N, Harrison DJ, Seiler K, Fluri K. Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J Micromech Microeng. 1994;4(4):257–65.

    CAS  Google Scholar 

  3. Gravesen P, Branebjerg J, Jensen OS. Microfluidics-a review. J Micromech Microeng. 1993;3(4):168–82.

    CAS  Google Scholar 

  4. Mala GM, Li D, Dale J. Heat transfer and fluid flow in microchannels. Int J Heat Mass Transf. 1997;40(13):3079–88.

    CAS  Google Scholar 

  5. Soong C, Wang S. Theoretical analysis of electrokinetic flow and heat transfer in a microchannel under asymmetric boundary conditions. J Colloid Interface Sci. 2003;265(1):202–13.

    PubMed  CAS  Google Scholar 

  6. Li D. Electrokinetics in microfluidics. Amsterdam: Elsevier; 2004.

    Google Scholar 

  7. Chakraborty S. Analytical solutions of Nusselt number for thermally fully developed flow in microtubes under a combined action of electroosmotic forces and imposed pressure gradients. Int J Heat Mass Transf. 2006;49(3–4):810–3.

    Google Scholar 

  8. Jing D, Bhushan B. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: a review. J Colloid Interface Sci. 2015;454:152–79.

    PubMed  CAS  Google Scholar 

  9. Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E. High friction on a bubble mattress. Nat Mater. 2007;6(9):665–8.

    PubMed  CAS  Google Scholar 

  10. Karatay E, Haase AS, Visser CW, Sun C, Lohse D, Tsai PA, Lammertink RG. Control of slippage with tunable bubble mattresses. Proc Natl Acad Sci. 2013;110(21):8422–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Tan D, Liu Y. Combined effects of streaming potential and wall slip on flow and heat transfer in microchannels. Int Commun Heat Mass Transf. 2014;53:39–42.

    CAS  Google Scholar 

  12. Ranjit N, Shit G, Tripathi D. Electrothermal analysis in two-layered couple stress fluid flow in an asymmetric microchannel via peristaltic pumping. J Therm Anal Calorim. 2021;144(4):1325–42.

    CAS  Google Scholar 

  13. Tripathi D, Prakash J, Reddy MG, Misra JC. Numerical simulation of double diffusive convection and electroosmosis during peristaltic transport of a micropolar nanofluid on an asymmetric microchannel. J Therm Anal Calorim. 2021;143:2499–514.

    CAS  Google Scholar 

  14. Munawar S, Saleem N, Tripathi D. Cilia and electroosmosis induced double diffusive transport of hybrid nanofluids through microchannel and entropy analysis. Nonlinear Eng. 2023;12(1):20220287.

    Google Scholar 

  15. Narla V, Tripathi D, Bhandari D. Thermal analysis of micropolar fluid flow driven by electroosmosis and peristalsis in microchannels. Int J Ambient Energy. 2022;43(1):8193–205.

    CAS  Google Scholar 

  16. Narla V, Tripathi D, Bhandari D, Bég OA. Electrokinetic insect-bioinspired membrane pumping in a high aspect ratio bio-microfluidic system. Microfluid Nanofluid. 2022;26(11):85.

    CAS  Google Scholar 

  17. Prakash J, Balaji R, Tripathi D, Tiwari AK, Sharma R. Composite nanofluids flow driven by electroosmosis through squeezing parallel plates in presence of magnetic fields, In: Advancements in nanotechnology for energy and environment. Springer; 2022. p. 273–93.

  18. Akram J, Akbar NS, Alansari M, Tripathi D. Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel. Int Commun Heat Mass Transf. 2022;136: 106208.

    CAS  Google Scholar 

  19. Akram J, Akbar NS, Tripathi D. Analysis of electroosmotic flow of silver-water nanofluid regulated by peristalsis using two different approaches for nanofluid. J Comput Sci. 2022;62: 101696.

    Google Scholar 

  20. Lu D, Noreen S, Waheed S, Tripathi D. Heat transfer applications in curved micro-channel driven by electroosmosis and peristaltic pumping. J Mech Med Biol. 2022;22(05):2250030.

    Google Scholar 

  21. Balaji R, Prakash J, Tripathi D, Bég OA. Computation of magnetohydrodynamic electro-osmotic modulated rotating squeezing flow with zeta potential effects. Colloids Surf A. 2022;640: 128430.

    CAS  Google Scholar 

  22. Akram J, Akbar NS, Tripathi D. Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media. J Therm Anal Calorim. 2022;147: 2509–2526.

    CAS  Google Scholar 

  23. Misra JC, Maiti S. Peristaltic pumping of blood through small vessels of varying cross-section. J Appl Mech. 2012;79(6): 061003.

    Google Scholar 

  24. Kumar R, Tiwari AK, Tripathi D, Mishra A. Electromagnetic field induced alterations in fluid flow through lacuno-canalicular system of bone. Int J Mech Sci. 2022;217: 107036.

    Google Scholar 

  25. Oni MO, Jha BK, Ajibade AO. Interplay of dual streaming potentials on electroosmotic mixed convection flow in a vertical microannulus with joule heating effect. Int Commun Heat Mass Transf. 2022;131: 105839.

    CAS  Google Scholar 

  26. Gao X, Zhao G, Li N, Zhang J, Jian Y. The electrokinetic energy conversion analysis of viscoelastic fluid under the periodic pressure in microtubes. Colloids Surf A. 2022;646: 128976.

    CAS  Google Scholar 

  27. Xie Z. Electrokinetic energy conversion of core-annular flow in a slippery nanotube. Colloids Surf A. 2022;642: 128723.

    CAS  Google Scholar 

  28. Roy A, Dhar P. Micro-imbibition electro-magneto-hydrodynamics of viscoelastic fluids with interactive streaming potential. J NonNewton Fluid Mech. 2022;310: 104936.

    CAS  Google Scholar 

  29. Eringen AC. Simple microfluids. Int J Eng Sci. 1964;2: 205–17.

    Google Scholar 

  30. Eringen AC. Theory of micropolar fluids. J Math Mech. 1966;16(1): 1–18.

    Google Scholar 

  31. Hayakawa H. Slow viscous flows in micropolar fluids. Phys Rev E. 2000;61:5477.

    CAS  Google Scholar 

  32. Turk MA, Sylvester ND, Ariman T. On pulsatile blood flow. Trans Soc Rheol. 1973;17:1–21.

    Google Scholar 

  33. Misra JC, Ghosh SK. A mathematical model for the study of interstitial fluid movement vis-a-vis the non-Newtonian behaviour of blood in a constricted artery. Comput Math Appl. 2001;41:783–811.

    Google Scholar 

  34. Mehta A. Granular matter: an interdisciplinary approach. Berlin: Springer; 1994.

    Google Scholar 

  35. Papautsky I, Brazzle J, Ameel T, Frazier AB. Laminar fluid behavior in microchannels using micropolar fluid theory. Sens Actuators A. 1999;73:101–8.

    CAS  Google Scholar 

  36. Ariman T, Turk M, Sylvester N. Microcontinuum fluid mechanics-a review. Int J Eng Sci. 1973;11:905–30.

    Google Scholar 

  37. Ariman T, Turk M, Sylvester N. Applications of microcontinuum fluid mechanics. Int J Eng Sci. 1974;12:273–93.

    Google Scholar 

  38. Stokes VK. Theories of fluids with microstructure: an introduction. Berlin: Springer; 2012.

    Google Scholar 

  39. Lukaszewicz G. Micropolar fluids: theory and applications. Berlin: Springer; 1999.

    Google Scholar 

  40. Eringen AC. Microcontinuum field theories: II. Fluent media, vol. 2. Berlin: Springer; 2001.

    Google Scholar 

  41. Siddiqui AA, Lakhtakia A. Steady electro-osmotic flow of a micropolar fluid in a microchannel. Proc R Soc A Math Phys Eng Sci. 2009;465:501–22.

    Google Scholar 

  42. Siddiqui AA, Lakhtakia A. Non-steady electro-osmotic flow of a micropolar fluid in a microchannel. J Phys A Math Theor. 2009;42: 355501.

    Google Scholar 

  43. Misra JC, Chandra S, Shit GC, Kundu PK. Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of blood flow in microfluidic devices. Appl Math Mech. 2014;35:749–66.

    Google Scholar 

  44. Misra JC, Chandra S, Herwig H. Flow of a micropolar fluid in a micro-channel under the action of an alternating electric field: estimates of flow in bio-fluidic devices. J Hydrodyn. 2015;27:350–8.

    Google Scholar 

  45. Bejan A. Convection heat transfer. New York: Wiley; 2013.

    Google Scholar 

  46. Bejan A, Kestin J. Entropy generation through heat and fluid flow. J Appl Mech. 1983;50:451–63.

    Google Scholar 

  47. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press; 2013.

    Google Scholar 

  48. Sarkar S, Ganguly S, Dutta P. Thermally developing combined magnetohydrodynamic and electrokinetic transport in narrow confinements with interfacial slip. Int J Heat Mass Transf. 2016;100:451–63.

    Google Scholar 

  49. Ranjit N, Shit G. Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy. 2017;128:649–60.

    Google Scholar 

  50. Sarma R, Jain M, Mondal PK. Towards the minimization of thermodynamic irreversibility in an electrically actuated microflow of a viscoelastic fluid under electrical double layer phenomenon. Phys Fluids. 2017;29: 103102.

    Google Scholar 

  51. Matin MH, Khan WA. Entropy generation analysis of heat and mass transfer in mixed electrokinetically and pressure-driven flow through a slit microchannel. Energy. 2013;56:207–17.

    Google Scholar 

  52. Pabi S, Mehta SK, Pati S. Analysis of thermal transport and entropy generation characteristics for electroosmotic flow through a hydrophobic microchannel considering viscoelectric effect. Int Commun Heat Mass Transf. 2021;127: 105519.

    Google Scholar 

  53. Liu Y, Xing J, Jian Y. Heat transfer and entropy generation analysis of electroosmotic flows in curved rectangular nanochannels considering the influence of steric effects. Int Commun Heat Mass Transf. 2022;139: 106501.

    CAS  Google Scholar 

  54. Sujith T, Mehta SK, Pati S. Effect of finite size of ions on entropy generation characteristics for electroosmotic flow through microchannel considering interfacial slip. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11731-8.

    Article  Google Scholar 

  55. Das S, Ali A, Jana R, Makinde O. Edl impact on mixed magneto-convection in a vertical channel using ternary hybrid nanofluid. Chem Eng J Adv. 2022;12: 100412.

    CAS  Google Scholar 

  56. Reddy KV, Reddy MG, Makinde OD. Analysis of joule heating and chemical reaction effects in electroosmosis peristaltic transport of couple-stress and micropolar fluids. Heat Transf. 2022;51(6):4992–5014.

    Google Scholar 

  57. Monaledi RL, Makinde OD. Entropy generation analysis in a microchannel Poiseuille flows of nanofluid with nanoparticles injection and variable properties. J Therm Anal Calorim. 2021;143:1855–65.

    CAS  Google Scholar 

  58. Makinde OD, Eegunjobi AS. Entropy analysis of thermally radiating magnetohydrodynamic slip flow of Casson fluid in a microchannel filled with saturated porous media. J Porous Media. 2016;19(9):799–810.

    Google Scholar 

  59. Misra JC, Ghosh SK. Flow of a Casson fluid in a narrow tube with a side branch. Int J Eng Sci. 2000;38(18):2045–77.

    Google Scholar 

  60. Endalew MF, Sarkar S, Seth GS, Makinde OD. Dual-phase-lag heat transfer model in hydromagnetic second grade flow through a microchannel filled with porous material: A time-bound analysis. Rev Compos Mater Av. 2018;28(2):173.

    Google Scholar 

  61. Bikerman JJ. Structure and capacity of electrical double layer. Lond Edinb Dublin Philos Mag J Sci. 1942;33:384–97.

    CAS  Google Scholar 

  62. Kilic MS, Bazant MZ, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E. 2007;75:021502.

    Google Scholar 

  63. Kilic MS, Bazant MZ, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations. Phys Rev E. 2007;75:021503.

    Google Scholar 

  64. Liu Y, Jian Y, Yang C. Steric-effect-induced enhancement of electrokinetic energy conversion efficiency in curved nanochannels with rectangular sections at high zeta potentials. Colloids Surf A. 2020;591: 124558.

    CAS  Google Scholar 

  65. Liu Y, Xing J, Jian Y. Heat transfer and entropy generation analysis of electroosmotic flows in curved rectangular nanochannels considering the influence of steric effects. Int Commun Heat Mass Transf. 2022;139: 106501.

    CAS  Google Scholar 

  66. Pandey D, Bhattacharyya S. Impact of surface hydrophobicity and ion steric effects on the electroosmotic flow and ion selectivity of a conical nanopore. Appl Math Model. 2021;94:721–36.

    Google Scholar 

  67. Mahapatra P, Ohshima H, Gopmandal PP. Electrophoresis of liquid-layer coated particles: impact of ion partitioning and ion steric effects. Langmuir. 2021;37:11316–29.

    PubMed  CAS  Google Scholar 

  68. Nam-Trung N. Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid. 2012;12:1–16.

    Google Scholar 

  69. Das S, Chakraborty S, Mitra SK. Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: framework for combined magnetohydrodynamic and magnetophoretic particle transport. Microfluid Nanofluid. 2012;13:799–807.

    Google Scholar 

  70. Tripathi D, Bhandari D, Anwar Bég O. Thermal effects on SARS-CoV-2 transmission in peristaltic blood flow: mathematical modeling. Physics of Fluids. 2022;34(6):061904.

    CAS  Google Scholar 

  71. Mallick B, Misra JC. Interplay of steric factor and high zeta potential on entropy generation during nanofluid slip flow in a microfluidic tube. Eur Phys J Plus. 2022;137:1–18.

    Google Scholar 

  72. Mallick B. Thermofluidic characteristics of electrokinetic flow in a rotating microchannel in presence of ion slip and hall currents. Int Commun Heat Mass Transf. 2021;126: 105350.

    CAS  Google Scholar 

  73. Hunter RJ. Foundations of colloid science. Oxford: Oxford University Press; 2001.

    Google Scholar 

  74. Hunter RJ. Zeta potential in colloid science: principles and applications, vol. 2. New York: Academic Press; 2013.

    Google Scholar 

  75. Chen X, Jian Y, Xie Z, Ding Z. Thermal transport of electromagnetohydrodynamic in a microtube with electrokinetic effect and interfacial slip. Colloids Surf A. 2018;540:194–206.

    CAS  Google Scholar 

  76. Thompson PA, Troian SM. A general boundary condition for liquid flow at solid surfaces. Nature. 1997;389:360–2.

    CAS  Google Scholar 

  77. Rees DAS, Bassom AP. The Blasius boundary-layer flow of a micropolar fluid. Int J Eng Sci. 1996;34:113–24.

    CAS  Google Scholar 

  78. Peddieson J Jr. An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci. 1972;10:23–32.

    Google Scholar 

  79. Gaikwad HS, Roy A, Mondal PK. Autonomous filling of a viscoelastic fluid in a microfluidic channel: effect of streaming potential. J NonNewton Fluid Mech. 2020;282:104317.

    CAS  Google Scholar 

  80. Jian Y. Electrokinetic energy conversion of fluids with pressure-dependent viscosity in nanofluidic channels. Int J Eng Sci. 2022;170: 103590.

    CAS  Google Scholar 

  81. Misra JC, Mallick B, Steinmann P. Temperature distribution and entropy generation during Darcy–Forchheimer–Brinkman electrokinetic flow in a microfluidic tube subject to a prescribed heat flux. Meccanica. 2020;55:1079–98.

    Google Scholar 

  82. Fadaei P, Niazmand H, Raoufi MA. Influence of finite size of ions on thermal transport of a simultaneous electrokinetic-pressure driven flow of power-law fluids in a slit microchannel. Colloids Surf A. 2022;634: 127857.

    CAS  Google Scholar 

  83. Chen X, Jian Y. Entropy generation minimization analysis of two immiscible fluids. Int J Therm Sci. 2022;171: 107210.

    Google Scholar 

  84. Misra JC, Sinha A, Mallick B. Stagnation point flow and heat transfer on a thin porous sheet: applications to flow dynamics of the circulatory system. Physica A. 2017;470:330–44.

    Google Scholar 

  85. Misra JC, Mallick B, Sinha A, Chowdhury AR. Impact of Cattaneo-Christov heat flux on electroosmotic transport of third-order fluids in a magnetic environment. Eur Phys J Plus. 2018;133:195.

    Google Scholar 

  86. Zhao G, Jian Y, Li F. Heat transfer of nanofluids in microtubes under the effects of streaming potential. Appl Therm Eng. 2016;100:1299–307.

    CAS  Google Scholar 

  87. Goswami P, Chakraborty S. Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip. Langmuir. 2010;26(1):581–90.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the esteemed reviewers for their valuable comments, based on which the manuscript has been amply revised.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mallick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B. Mallick: A portion of the present investigation was carried out when the author was working at the Vellore Institute of Technology, Chennai, India.

Appendix

Appendix

$$\begin{aligned}{} & {} A_1^\text{i}=1,~A_2^\text{i}=\frac{1}{r^\text{i}},~A_3^\text{i}=\frac{\lambda ^2 \sinh (\psi ^\text{i})/\psi ^\text{i}}{1+4\wp \sinh ^2(\psi ^\text{i}/2)},~A_4^\text{i}=0,\\{} & {} B_1^\text{i}=(1 +a),~B_2^\text{i}=\frac{1+a}{r^\text{i}},~B_3^\text{i}=0, \\{} & {} B_4^\text{i}=-\Bigg (\Gamma +\frac{\lambda ^2E}{\zeta }\frac{\sinh (\psi ^\text{i})}{1+4\wp \sinh ^2(\psi ^\text{i}/2)}\Bigg )\\{} & {} \quad\quad -2a\left\{ \left( \frac{\partial w_\upvarphi }{\partial r}\right) ^\text{i}+\frac{w^\text{i}_\upvarphi }{r^\text{i}}\right\} ,\\{} & {} C_1^\text{i}=1,~C_2^\text{i}=\frac{1}{r_\mathrm{i}},~C_3^\text{i}=-4b,~C_4^\text{i}=2b\left( \frac{\partial u}{\partial r}\right) ^\text{i},\nonumber \\{} & {} D_1=1,~~D_2=\frac{D_1}{r_\mathrm{i}},~~D_3=0,\\{} & {} D_4=\frac{u_{\mathrm{z}}^\text{i}}{u_{\mathrm{a}}}A-E^2S-\left( 1+a\right) Br\left[ \left( \frac{\partial u_{\mathrm{z}}}{\partial r}\right) ^2\right] ^\text{i} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, B., Choudhury, A. & Misra, J.C. Irreversibility analysis for ion size-dependent electrothermal transport of micropolar fluid in a microtube. J Therm Anal Calorim 148, 12017–12035 (2023). https://doi.org/10.1007/s10973-023-12538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12538-x

Keywords

Navigation