Skip to main content
Log in

Non-Newtonian fluid flow induced by pressure gradient and time-periodic electroosmosis in a microtube

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Non-Newtonian fluid flow, based on the Carreau–Yasuda model, is studied in a circular microchannel which is driven by combined pressure gradient and alternating current electroosmosis. Smaller values of the flow behavior index correspond to the larger degrees of shear-thinning, and so the velocity field contracts. The flow field is strongly influenced by the dimensionless frequency. When viscous diffusion is faster than the period of oscillation, the bulk fluid has sufficient time to respond to alternating current electric field, and quasi-steady plug-like velocity profiles may be observed for sufficient large values of the flow behavior index; while a major part of the flow field may be immobile at sufficiently high dimensionless frequencies. When a pressure gradient is applied along the microchannel, the periodic velocity field deviates from the centerline and hence, a non-zero pulsating flow rate is attained. The non-linearity of the fluid behavior is enhanced by the Weissenberg number through the model time constant. Large or small values of shear stress during one period can lead to sharp variation of viscosity. Using non-Newtonian fluids, the voltage and current required to attain desirable characteristics, and therefore, the detrimental effects of Joule heating may be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a :

A dimensionless parameter

\( D \) :

Time ratio

\( {\text{d}}p/{\text{d}}z \) :

Pressure gradient

\( e \) :

Electron charge (C)

\( E_{z} \) :

Electrical field strength along axial direction (V/m)

\( k_{\text{B}} \) :

Boltzmann constant (J/K)

\( K \) :

Flow consistency index

\( n \) :

Flow behavior index

\( n_{0} \) :

Bulk ion concentration (m−3)

\( r \) :

Radial coordinate (m)

\( \Re \) :

The microchannel radius (m)

\( R \) :

Dimensionless radial coordinate

\( t \) :

Time (s)

\( T \) :

Absolute temperature (K)

\( V \) :

Dimensionless axial velocity

\( V_{z} \) :

Axial velocity (m/s)

\( V_{\text{HS}} \) :

The Helmholtz–Smoluchowski velocity

\( Wi \) :

Weissenberg number

\( z \) :

Axial coordinate (m)

\( Z \) :

Dimensionless potential at the wall

\( \aleph \) :

Valence of ionic species

\( \chi \) :

The electro-kinetic radius

\( \varepsilon \) :

Electric permittivity of solution (F/m)

\( \eta_{0} \) :

Zero-shear-rate viscosity (Pa s)

\( \eta_{\infty } \) :

Infinite-shear-rate viscosity (Pa s)

\( \eta_{\text{vr}} \) :

Viscosity ratio

\( \kappa \) :

Debye–Hückel parameter (m−1)

\( \lambda \) :

A time constant (s)

\( \theta \) :

Dimensionless time

\( \rho \) :

Fluid density (kg/m3)

\( \rho_{e} \) :

Net volume charge density (C m−3)

\( \tau \) :

Time scale

\( \omega \) :

Frequency (s−1)

\( \gamma \) :

Force ratio

\( \dot{\varUpsilon } \) :

Rate-of-strain tensor (s−1)

\( \varOmega \) :

Dimensionless frequency

\( \psi \) :

Electrical potential (V)

\( \varPsi \) :

Dimensionless electrical potential

\( \zeta \) :

Zeta potential at the outer wall (V)

References

  1. Bruus H (2008) Theoretical microfluidics. Oxford University Press, New York

    Google Scholar 

  2. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Wiley, New York

    Google Scholar 

  3. Paul PH (2008) Electrokinetic device employing a non-Newtonian liquid, United States Patent, Patent no. US 7,429,317 B2

  4. Ajdari A (1995) Electroosmosis on inhomogeneously charged surfaces. Phys Rev Lett 75:755–758

    Article  Google Scholar 

  5. Bhattacharyya S, Nayak AK (2010) Combined effect of surface roughness and heterogeneity of wall potential on electroosmosis in microfluidic/nanofluidic channels. ASME J Fluids Eng 132:041103

    Article  Google Scholar 

  6. Arulanandam S, Li D (2000) Liquid transport in rectangular microchannels by electroosmotic pumping. Colloid Surface A 161:89–102

    Article  Google Scholar 

  7. Bhattacharyya S, Bera S (2013) Non-linear electroosmosis pressure-driven flow in a wide microchannel with patchwise surface heterogeneity. ASME J Fluids Eng 135:021303

    Article  Google Scholar 

  8. Kang Y, Yang C, Huang X (2002) Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. Int J Eng Sci 40:2203–2221

    Article  Google Scholar 

  9. Cho CC, Chen C-L, Chen CK (2013) Characteristics of transient electroosmotic flow in microchannels with complex-wavy surface and periodic time-varying electric field. ASME J Fluids Eng 135:021301

    Article  Google Scholar 

  10. Green NG, Ramos A, Gonzalez A, Morgan H, Castellanos A (2000) Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes I: experimental measurements. Phys Rev E 61:4011–4018

    Article  Google Scholar 

  11. Gonzalez A, Ramos A, Green NG, Castellanos A, Morgan H (2000) Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes II: a linear double layer analysis. Phys Rev E 61:4019–4028

    Article  Google Scholar 

  12. Brown ABD, Smith CG, Rennie AR (2002) Pumping of water with an ac electric field applied to asymmetric pairs of microelectrodes. Phys Rev E 63:016305 (1–8)

    Article  Google Scholar 

  13. Studer V, Pepin A, Chen Y, Ajdari A (2002) Fabrication of microfluidic devices for AC electrokinetic fluid pumping. Microelectron Eng 61–62:915–920

    Article  Google Scholar 

  14. Erickson D, Li D (2003) Analysis of alternating current electroosmotic flows in a rectangular microchannel. Langmuir 19:5421–5430

    Article  Google Scholar 

  15. Dutta P, Beskok A (2001) Analytical solution of time periodic electroosmotic flows: analogies to stokes second problem. Anal Chem 73:5097–5102

    Article  Google Scholar 

  16. Tang GH, Li XF, Tao WQ (2010) Microannular electroosmotic flow with the axisymmetric lattice Boltzmann method. J Appl Phys 108:114903

    Article  Google Scholar 

  17. Moghadam AJ (2012) An exact solution of AC electro-kinetic-driven flow in a circular micro-channel. Eur J Mech B Fluids 34:91–96

    Article  MathSciNet  MATH  Google Scholar 

  18. Moghadam AJ (2013) Exact solution of AC electro-osmotic flow in a microannulus. ASME J Fluids Eng 135:091201

    Article  Google Scholar 

  19. Moghadam AJ (2014) Effect of periodic excitation on alternating current electroosmotic flow in a microannular channel. Eur J Mech B Fluids 48:1–12

    Article  MathSciNet  Google Scholar 

  20. Moghadam AJ, Akbarzadeh P (2016) Time-periodic electroosmotic flow of non-Newtonian fluids in microchannels. IJE Trans B Appl 29(5):706–714

    Google Scholar 

  21. Zhao C, Yang C (2011) Electro-osmotic mobility of non-Newtonian fluids. Biomicrofluidics 5:014110

    Article  Google Scholar 

  22. Zhao C, Yang C (2013) Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel. Electrophoresis 34:662–667

    Article  Google Scholar 

  23. Babaie A, Sadeghi A, Saidi MH (2011) Combined electroosmotically and pressure driven flow of power law fluids in a slit microchannel. J Non Newton Fluid Mech 166:792–798

    Article  MATH  Google Scholar 

  24. Bharti RP, Harvie DJE, Davidson MR (2009) Electroviscous effects in steady fully developed flow of a power-law liquid through a cylindrical microchannel. Int J Heat Fluid Flow 30:804–811

    Article  Google Scholar 

  25. Tang GH, Li XF, He YL, Tao WQ (2009) Electroosmotic flow of non-Newtonian fluid in microchannels. J Non Newton Fluid Mech 157:133–137

    Article  MATH  Google Scholar 

  26. Mondal S, De S (2013) Effects of non-Newtonian power law rheology on mass transport of a neutral solute for electro-osmotic flow in a porous microtube. Biomicrofluidics 7:044113

    Article  Google Scholar 

  27. Liu Q, Jian Y, Yang L (2011) Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel. Phys Fluids 23:102001

    Article  MATH  Google Scholar 

  28. Moghadam AJ (2016) Two-fluid electrokinetic flow in a circular microchannel. IJE Trans A Basics 29(10):1469–1477

    Google Scholar 

  29. Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology. Butterworth-Heinemann, Oxford

    Google Scholar 

  30. Mark ED (1984) Numerical methods and modeling for chemical engineers. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jabari Moghadam.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, A.J., Akbarzadeh, P. Non-Newtonian fluid flow induced by pressure gradient and time-periodic electroosmosis in a microtube. J Braz. Soc. Mech. Sci. Eng. 39, 5015–5025 (2017). https://doi.org/10.1007/s40430-017-0876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0876-8

Keywords

Navigation