Skip to main content
Log in

Bioconvective treatment for the reactive Casson hybrid nanofluid flow past an exponentially stretching sheet with Ohmic heating and mixed convection

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Maintaining continuous thermal propagation is essential in many industrial and thermal systems because it helps improve the efficiency of thermal engineering engines and machines. Thus, the hybridization of magnetized nanoparticles in a heat-supporting non-Newtonian fluid is a good platform to enhance thermal power energy. As such, this study focuses on the bioconvective treatment for the reactive Casson hybrid nanofluid flow past an exponentially stretching sheet with Ohmic heating and mixed convection. The hybridization process considers Au (Gold) and Ag (Silver) nanoparticles in water base liquid. A partial derivative model is developed for the hybrid volume fraction, which is simplified to a dimensionless ordinary derivative model. A semi-analytical Chebyshev collocation scheme (CCS) is used to provide solutions to the transformed model. The physical impacts of the fluid parameters on the momentum, heat distribution, reacting species field and microbial species are illustrated in graphs for both Ag and Au nanoparticles. A limited case of the present work is compared with the earlier studies to validate our results. The results show that the velocity of mono/hybrid nanofluids upsurges with rising values of the mixed convection term. The bioconvective Schmidt number declines the motile microorganism profiles. The higher velocities, temperatures and concentrations are recorded for hybrid (Ag-Au/water) nanofluid, followed by unitary Au-water and Ag-water nanofluids separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(B(x)\) :

Variable magnetic field

\({B}_{0}\) :

Applied magnetic field (Tesla i.e. Webers/m2)

\(Cr\) :

Chemical reaction

\({Cf}_{x}\) :

Local skin friction

\({C}_{\mathrm{w}}\) :

Wall concentration (Moles)

\({C}_{\infty }\) :

Ambient (freestream) concentration (Moles)

\({D}_{\mathrm{B}}\) :

Molecular diffusivity of the reactive species (m2 s-1)

\({D}_{\mathrm{n}}\) :

Microorganism diffusion coefficient

\(Ec\) :

Eckert number

g :

Gravitational acceleration (9.81 m s-2)

\(k:\) :

Thermal conductivity

\({k}^{*}\) :

Mean absorption coefficient

\(Kr\) :

Dimensional chemical reaction

\({K}_{\mathrm{p}}\) :

Porosity term

\(M\) :

Magnetic interaction parameter

\(N\) :

Microbial concentration

\({N}_{\mathrm{w}}\) :

Surface concentration of microorganism

\({N}_{\infty }\) :

Ambient concentration of microorganism

\({N}^{*}\) :

Buoyancy ratio

\({Nu}_{\text{x}}\) :

Local Nusselt number

\({Nn}_{\text{x}}\) :

Local density number

\(Pe\) :

Peclet bioconvection number

\(Pr\) :

Prandtl number

\({q}_{\mathrm{r}}\) :

Radiative flux

\(Q\) :

Heat source/sink parameter

\({Q}_{0}\) :

Heat generation/absorption coefficient (W m2•K-1).

\(R\) :

Radiation parameter

\({Sc}_{1}\) :

Schmidt number

\({Sc}_{2}\) :

Bio convection Schmidt number

\({Sh}_{\text{x}}\) :

Local Sherwood number

\({T}_{\text{w}}\) :

Wall temperature (K)

\({T}_{\infty }\) :

Ambient (free stream) temperature (K)

\(u,v\) :

Velocity along x and y directions (m s-1)

\({u}_{\text{w}},{v}_{\text{w}}\) :

Exponential velocities (m s-1)

\({W}_{c}\) :

Maximum cell swimming speed

\(x,y\) :

Coordinates along and transverse to sheet

\(\beta\) :

Casson parameter

\(\mu\) :

Dynamic viscosity (kg m-1s-1)

\(\rho\) :

Density (kg m-3)

\(\sigma\) :

Electrical conductivity (Siemens/m)

\(\upsilon\) :

Kinematic viscosity (m2/s-1)

\({\beta }^{*}\) :

Volumetric thermal expansion coefficient (K–1)

\({\left(\rho {c}_{\mathrm{p}}\right)}_{\mathrm{nf}}\) :

Specific heat capacity (J kg-1 K-1)

\(\varphi\) :

Nanoparticle volume fraction

\({\varphi }_{1},{\varphi }_{2}\) :

Nanoparticle property functions

σ * :

Stefan–Boltzmann radiative constant (5.6704 × 10−8 W m-2 K-1)

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

\(\chi\) :

Dimensionless concentration of microorganism

\(f\) :

Base fluid

\(nf\) :

Nanofluid

\(hnf\) :

Hybrid nanofluid

References

  1. Lanjwani HB, Anwar MI, Wahab A, Shehzad SA, Arshad M. Analysis of triple solutions in mixed convection flow and heat transfer characteristics of Ag-water based nanofluid over porous shrinking/stretching sheet. Mat Sci Eng: B. 2022;286:116076. https://doi.org/10.1016/j.mseb.2022.116076.

    Article  CAS  Google Scholar 

  2. Rashidi MM, Mahariq I, Nazari MA, Accouche Q, Bhatti MM. Comprehensive review on exergy analysis of shell and tube heat exchangers. J Therm Anal Calorim. 2022;147:12301–11. https://doi.org/10.1007/s10973-022-11478-2.

    Article  CAS  Google Scholar 

  3. Choi SUS. Development and application of non-Newtonian flows. Am Soc Mech Eng Fluids Eng Div. 1995;231:99–105.

    CAS  Google Scholar 

  4. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Proc ASME Int Mech Eng Congress and Exposition. San Francisco, 12–17 Nov; 1995.

  5. Shamshuddin MD, Ferdows M, Anwar Beg O, Beg TA, Leonard HJ. Computation of reactive Thermosolutal micropolar nanofluid Sakiadis convection flow with gold/silver metallic nanoparticles. Waves Random Comp Media. 2022. https://doi.org/10.1080/17455030.2022.2051773.

    Article  Google Scholar 

  6. Waqas H, Farooq U, Liu D, Alghamdi M, Noreen S, Muhammad T. Numerical investigation of nanofluid flow with gold and silver nanoparticles injected inside a stenotic artery. Mat Des. 2022;223:111130. https://doi.org/10.1016/j.matdes.2022.111130.

    Article  CAS  Google Scholar 

  7. Casson N. A flow equation for pigment-oil suspensions of the printing ink type. In: Mill CC, editor. Rheology of disperse systems. Oxford: Pergamon Press; 1959. p. 84–94.

    Google Scholar 

  8. Ibrahim S, Lorenzini G, Kumar PV, Raju CSK. Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet. Int J Heat and Mass Transf. 2017;111:346–55. https://doi.org/10.1016/j.ijheatmasstransfer.2107.03.097.

    Article  CAS  Google Scholar 

  9. Amjad M, Zehra I, Nadeem S, Abbas N, Saleem A, Issakhov A. Influence of Lorentz force and induced magnetic field effects on Casson micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region. Surf Interfaces. 2020;21:100766. https://doi.org/10.1016/j.surfin.2020.100766.

    Article  CAS  Google Scholar 

  10. Abbas N, Shatanawi W, Abodayeh K. Computational analysis of MHD nonlinear radiation casson hybrid nanofluid flow at vertical stretching sheet. Symmetry. 2022;14(7):1494. https://doi.org/10.3390/sym14071494.

    Article  CAS  Google Scholar 

  11. Waqas H, Shehzad SA, Khan SU, Imran M. Novel numerical computations on flow of nanoparticles in porous rotating disk with multiple slip effects and microorganisms. J Nanofluids. 2019;8(7):1423–32. https://doi.org/10.1166/jon.2019.1702.

    Article  Google Scholar 

  12. Muneeshwaran M, Srinivasan G, Muthukumar P, Wang CC. Role of hybrid nanofluid in heat transfer enhancement-a review. Int Commun Heat and Mass Transf. 2021;125:105341. https://doi.org/10.1016/j.icheatmasstransfer.2021.105341.

    Article  CAS  Google Scholar 

  13. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: acritical review. Int J Heat and Mass Transf. 2018;126:211–34. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021.

    Article  CAS  Google Scholar 

  14. Turcu R, Darabont AL, Nan A, Aldea N, Macovei D, Bica D, Vekas L, Pana O, Soran ML, Koos AA, Biro LP. New polypyrrole-multiwall carbon nanotubes hybrid materials. J Optoelect Adv Mat. 2006;8:643–7.

    CAS  Google Scholar 

  15. Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges. Sol Energy. 2019;183:173–203. https://doi.org/10.1016/j.solener.2019.03.012.

    Article  CAS  Google Scholar 

  16. Sahoo RR, Kumar V. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. Int Commun Heat and Mass Transf. 2020;111:104451. https://doi.org/10.1016/j.icheatmasstransfer.2019.104451.

    Article  CAS  Google Scholar 

  17. Wang J, Xu YP, Qahiti R, Jafaryar M, Alazwari MA, Abu-Hamdeh NH, Issakhov A, Selim MM. Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing cpu stability. J Pet Sci Eng. 2022;208:109734. https://doi.org/10.1016/j.petrol.2021.109734.

    Article  CAS  Google Scholar 

  18. Bhatti MM, Oztop HF, Ellahi R, Sarris IE, Doranehgard MH. insight into the investigation of diamond (C) and Silica (SiO2) nanoparticles suspended in water-based hybrid nanofluid with application in solar collector. J Mol Liq. 2022;357:119134. https://doi.org/10.1016/j.molliq.2022.119134.

    Article  CAS  Google Scholar 

  19. Bhatti MM, Oztop HK, Ellahi R. Study of the magnetized hybrid nanofluid flow through a flat elastic surface with applications in solar energy. Materials. 2022;15(21):7505. https://doi.org/10.3390/ma15217507.

    Article  CAS  Google Scholar 

  20. Dawar A, Islam S, Shah Z, Mahmoud SR. A passive control of Casson hybrid nanofluid flow over a curved surface with alumina and copper nanomaterials: a study on sodium alginate-base fluid. J Mol Liq. 2023;382:122018. https://doi.org/10.1016/j.molliq.2023.122018.

    Article  CAS  Google Scholar 

  21. Shah Z, Rooman M, Shutaywi M. Computational analysis of radiative engine oil-based Prandtl-Eyring hybrid nanofluid flow with variable heat transfer using the Cattaneo-Christov heat flux model. RSC Adv. 2023;13:3552–60. https://doi.org/10.1039/D2RA08197K.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Awais M, Shah Z, Praveen N, Ali A, Kumam P, Rehman HU, Thounthong P. MHD effects on ciliary-induced peristaltic flow coatings with rheological hybrid nanofluid. Coatings. 2020;10(2):186. https://doi.org/10.3390/coatings10020186.

    Article  CAS  Google Scholar 

  23. Basir MFM, Uddin MJ, Anwar Beg O, Ismail AIM. Influence of Stefan blowing on nanofluid flow submerged in microorganisms with leading edge accretion or ablation. J Braz Soc Mech Sci Eng. 2017;39:4519–32. https://doi.org/10.1007/s40430-017-0877-7.

    Article  CAS  Google Scholar 

  24. Waqas H, Khan SU, Bhatti MM, Imran M. Significance of bioconvection in chemical reactive flow of magnetized Carreau-Yasuda nanofluid with thermal radiation and second-order slip. J Therm Anal Calorim. 2020;140:1293–306. https://doi.org/10.1007/s10973-020-09462-9.

    Article  CAS  Google Scholar 

  25. Shamshuddin MD, Rajput GR, Jamshed W, Shahzad F, Salawu SO, Aissa A, Patil VS. MHD bioconvection microorganism nanofluid driven by a stretchable plate through porous media with an induced heat source. Waves Random Comp Media. 2022. https://doi.org/10.1080/17455030.2022.2126024.

    Article  Google Scholar 

  26. Sampath Kumar PB, Gireesha BJ, Mahanthesh B, Chamkha AJ. Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bioconvection and second order slip with convective condition. J Therm Anal Calorim. 2019;136(5):1947–57. https://doi.org/10.1007/s10973-018-7860-0.

    Article  CAS  Google Scholar 

  27. Naz R, Noor M, Shah Z, Sohail M, Kumam P, Thounthong P. Entropy generation optimization in MHD pseudoplastic fluid comprising motile microorganism with stratification effect. Alex Eng J. 2020;59(1):485–96. https://doi.org/10.1016/j.aej.2020.01.018.

    Article  Google Scholar 

  28. Dawar A, Thumma T, Islam S, Shah Z. Optimization of response function on hydromagnetic buoyancy driven rotating flow considering particle diameter and interfacial layer effects: homotopy and sensitivity analysis. Int Commun Heat Mass Transf. 2023;144:106770. https://doi.org/10.1016/j.icheatmasstransfer.2023.106770.

    Article  CAS  Google Scholar 

  29. Ganga B, Ansari SMY, Ganesh NV, Abdul AKH. MHD flow of Buongiorno model nanofluid over a vertical plate with internal heat generation/absorption. Prop Power Res. 2016;5(3):211–22. https://doi.org/10.1016/j.jpr.2016.07.003.

    Article  Google Scholar 

  30. Shamshuddin MD, Aissa A, Aimad K, Eid MR, Shahzad F, Jamshed W. Thermal and solutal performance of Cu/Cuo nanoparticles on a non-linear radially stretching surface with heat source/sink and varying chemical reaction effects. Int Commun Heat and Mass Transf. 2021;129:105710. https://doi.org/10.1016/j.icheatmasstransfer.2021.105710.

    Article  CAS  Google Scholar 

  31. Ibrahim SM, Lorenzini G, Kumar V, Raju CSK. Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet. Int J Heat Mass Transf. 2017;111:346–55. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.097.

    Article  CAS  Google Scholar 

  32. Sunder Ram M, Spandana K, Shamshuddin MD, Salawu SO. Mixed convective heat and mass transfer in magnetized micropolar fluid flow toward stagnation point on a porous stretching sheet with heat source/sink and variable species reaction. Int J Mod Simult. 2022. https://doi.org/10.1080/02286203.2022.2112008.

    Article  Google Scholar 

  33. Neethu TS, Sabu AS, Mathew A, Wakif A, Sujesh A. Multiple regression on bioconvective MHD hybrid nanofluid flow past an exponential stretching sheet with radiation and dissipation effects. Int Commun Heat and Mass Transf. 2022;135:106115. https://doi.org/10.10106/j.icheatmasstransfer.2022.106115.

    Article  CAS  Google Scholar 

  34. Waini I, Ishak A, Pop I. Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chin J Phys. 2020;68:468–82. https://doi.org/10.1016/j.cjph.2019.12.015.

    Article  CAS  Google Scholar 

  35. Pal D, Mondal SK. MHD Nanofluid bioconvection over an exponentially stretching sheet in the presence of Gyrotactic microorganisms and thermal radiation. BioNanoSci. 2018;8:272–87. https://doi.org/10.1007/s12668-017-0474-3.

    Article  Google Scholar 

  36. Shamshuddin MD, Eid MR. nth order reactive nanoliquid through convective elongated sheet under mixed convection flow with Joule heating effects. J Therm Anal Calorim. 2022;147(5):3853–67. https://doi.org/10.1007/s10973-021-10816-0.

    Article  CAS  Google Scholar 

  37. Fatunmbi EO, Adeosun AT, Salawu SO. Entropy analysis of nonlinear radiative Casson nanofluid transport over an electromagnetic actuator with temperature-dependent properties. Partial Diff Eqn Appl Math. 2021;4:100152. https://doi.org/10.1016/j.padiff.2021.100152.

    Article  Google Scholar 

  38. Salawu SO, Oderinu RA, Ohaegbue AD. Current density and thermodynamic analysis of energy optimization for double exothermic reaction of magneto-Oldroyd 8-constant material. J King Saud Univ-Sci. 2021;33(3):101374. https://doi.org/10.1016/j.ijksus.2021.101374.

    Article  Google Scholar 

  39. Yusuf TA, Akaje TW, Salawu SO, Gbadeyan JA. Arrhenius activation energy effect on a stagnation point slippery MHD Casson nanofluid flow with entropy generation and melting heat transfer. Defect Diffus Forum. 2021;408:1–18. https://doi.org/10.4028/ww.scientific.net/DDF.408.1.

    Article  Google Scholar 

  40. El-Aziz MA. Viscous dissipation effect on mixed convection flow of a micropolar fluid over an exponentially stretching sheet. Can J Phys. 2009;87:359–68. https://doi.org/10.1139/P09-047.

    Article  CAS  Google Scholar 

  41. Neethu TS, Sabu AS, Mathew A, Wakif A, Areekara S. Multiple linear regression on bioconvective MHD hybrid nanofluid flow past an exponential stretching sheet with radiation and dissipation effects. Int Commun Heat and Mass Transf. 2022;135:106115. https://doi.org/10.1016/j.icheatmasstransfer.2022.106115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. MDS involved in conceptualization, supervision, formal analysis, writing original draft and writing—review editing. Dr. SOS involved in methodology, software, visualization, validation and writing—review editing. Dr. KR involved in investigation, writing original draft and writing—review editing. Dr. VSP involved in resources and formal analysis. Dr. PPH involved in investigation and formal analysis.

Corresponding author

Correspondence to MD. Shamshuddin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamshuddin, M., Salawu, S.O., Ramesh, K. et al. Bioconvective treatment for the reactive Casson hybrid nanofluid flow past an exponentially stretching sheet with Ohmic heating and mixed convection. J Therm Anal Calorim 148, 12083–12095 (2023). https://doi.org/10.1007/s10973-023-12465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12465-x

Keywords

Navigation