Skip to main content
Log in

Analysis of MHD Bioconvection Flow of a Hybrid Nanofluid Containing Motile Microorganisms over a Porous Stretching Sheet

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This paper presents a numerical investigation of steady two-dimensional bioconvective MHD flow along with the heat and mass transfer phenomena of a water-based hybrid nanofluid containing motile microorganisms over a porous stretching sheet. The study considers effects of various physical parameters, such as thermal radiation, chemical reactions, Joule heating, and heat generation, on the flow and transport characteristics of the system. Copper (Cu) and alumina (Al2O3) nanoparticles are used with water (H2O) as the base fluid. The governing equations are transformed into a set of nonlinear ordinary differential equations using a standard similarity transformation. The reduced equations are solved numerically using the Keller-box method. The impact of different parameters on the velocity, temperature, concentration, and microorganism concentration profile is illustrated graphically, while their influence on the skin-friction coefficient, local Nusselt number, local Sherwood number, and local density number of motile microorganisms is tabulated. This study provides an excellent agreement with previously published works. The results of the study show that the presence of motile microorganisms significantly enhances the heat transfer rate and mixing efficiency of the nanofluid. The analysis demonstrates that the chemical reaction and thermal radiation play crucial roles in controlling the concentration and temperature distributions of the nanofluid, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

a, b :

Constant

x, y :

Cartesian coordinates along the surface and normal to it, respectively (m)

u, v :

Velocity component along x-axis and y-axis respectively (m s−1)

T :

Temperature (K)

C :

Nanoparticle concentration (mol l−1)

N :

Concentration of the microorganism

B o :

Magnetic field (T)

k o :

Porous term (m2)

Q o :

Coefficient of heat generation

C p :

Specific heat at constant pressure (J kg−1 K−1)

q r :

Radiative heat flux

D m :

Mass diffusion coefficient

D n :

Microorganisms’ diffusion coefficient

Kr :

First-order chemical reaction coefficient

W c :

Maximum cell swimming speed

k :

Mean absorption coefficient

M :

Magnetic parameter

Ec :

Eckert number

Q :

Heat generation/absorption

K p :

Permeability parameter

Pr :

Prandtl number

Rd :

Radiation parameter

Sc :

Schmidt number

Sb :

Bioconvection Schmidt number

Pe :

Bioconvection Peclet number

Cf x :

Skin-friction coefficient

Nu x :

Nusselt number

Sh x :

Sherwood number

Nn x :

Density number of motile microorganism

Re x :

Reynold number

ν :

Kinematic viscosity (m2 s−1)

μ :

Dynamic viscosity (kg m−1 s−1)

σ :

Electrically conductivity (S m−1)

ρ :

Density (kg m−3)

κ :

Thermal conductivity of the nanofluid

γ :

Chemical reaction parameter

ϕ 1 :

Volume fraction of Cu nanoparticle

ϕ 2 :

Volume fraction of Al2O3 nanoparticle

Ω:

Microorganism concentration difference parameter

σ :

Stefan-Boltzmann coefficient

η :

Similarity variable

ψ :

Stream function

f :

Dimensionless velocity

θ :

Dimensional temperature

ϕ :

Dimensionless concentration of nanoparticles

χ :

Dimensionless concentration of microorganism

:

Derivative with respect to η

w :

At wall

∞:

At free stream region

hnf :

For hybrid nanofluid

nf :

For nanofluid with single nanoparticle

f :

For base fluid

s 1 :

For Cu nanoparticle

s 2 :

For Al2O3 nanoparticle

References

  1. Choi, S. U. S., & Eastman, J. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 66

  2. Lee, S., Choi, S. U. S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280–289. https://doi.org/10.1115/1.2825978

    Article  Google Scholar 

  3. Buongiorno, J. (2005). Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240–250. https://doi.org/10.1115/1.2150834

    Article  Google Scholar 

  4. Kuznetsov, A., & Nield, D. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243–247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015

    Article  Google Scholar 

  5. Khan, W., & Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53(11–12), 2477–2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032

    Article  MATH  Google Scholar 

  6. Makinde, O., & Aziz, A. (2011). Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50(7), 1326–1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019

    Article  Google Scholar 

  7. Ishak, A. (2011). MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malaysiana, 40(4), 391–395

    Google Scholar 

  8. Hayat, T., Shafiq, A., Alsaedi, A., & Shahzad, S. A. (2016). Unsteady MHD flow over exponentially stretching sheet with slip conditions. Applied Mathematics and Mechanics, 37(2), 193–208. https://doi.org/10.1007/s10483-016-2024-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Muntazir, R. M., Mushtaq, M., Shahzadi, S., & Jabeen, K. (2021). MHD nanofluid flow around a permeable stretching sheet with thermal radiation and viscous dissipation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(1), 137–152. https://doi.org/10.1177/09544062211023094

    Article  MATH  Google Scholar 

  10. Rao, S., & Deka, P. (2023, February 8). A numerical study on heat transfer for MHD flow of radiative casson nanofluid over a porous stretching sheet. Latin American Applied Research - an International Journal, 53(2), 129–136. https://doi.org/10.52292/j.laar.2023.950

    Article  Google Scholar 

  11. Rao, S., & Deka, P. (2022). A numerical solution using EFDM for unsteady MHD radiative Casson nanofluid flow over a porous stretching sheet with stability analysis. Heat Transfer, 51(8), 8020–8042. https://doi.org/10.1002/htj.22679

    Article  Google Scholar 

  12. Rao, S., & Deka, P. N. (2022). A numerical investigation on transport phenomena in a nanofluid under the transverse magnetic field over a stretching plate associated with solar radiation. Nonlinear Dynamics and Applications, 473–492. https://doi.org/10.1007/978-3-030-99792-2_39

  13. Alrihieli, H., Alrehili, M., & Megahed, A. M. (2022). Radiative MHD nanofluid flow due to a linearly stretching sheet with convective heating and viscous dissipation. Mathematics, 10(24), 4743. https://doi.org/10.3390/math10244743

    Article  Google Scholar 

  14. Abdul Jawwad, A. K., Jawad, M., Nisar, K. S., Saleem, M., & Hasanain, B. (2023). Radiative transport of MHD stagnation point flow of chemically reacting Carreau nanofluid due to radially stretched sheet. Alexandria Engineering Journal, 69, 699–714. https://doi.org/10.1016/j.aej.2023.02.024

    Article  Google Scholar 

  15. Majeed, A., Zeeshan, A., & Jawad, M. (2023). Double stratification impact on radiative MHD flow of nanofluid toward a stretchable cylinder under thermophoresis and brownian motion with multiple slip. International Journal of Modern Physics B. https://doi.org/10.1142/s0217979223502326

  16. Majeed, A., Zeeshan, A., Jawad, M., & Alhodaly, M. S. (2022). Influence of melting heat transfer and chemical reaction on the flow of non-Newtonian nanofluid with Brownian motion: Advancement in mechanical engineering. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 095440892211455. https://doi.org/10.1177/09544089221145527

  17. Jawad, M., Hameed, M. K., Nisar, K. S., & Majeed, A. H. (2023). Darcy-Forchheimer flow of maxwell nanofluid flow over a porous stretching sheet with Arrhenius activation energy and nield boundary conditions. Case Studies in Thermal Engineering, 44, 102830. https://doi.org/10.1016/j.csite.2023.102830

    Article  Google Scholar 

  18. Jawad, M., & Nisar, K. S. (2023). Upper-convected flow of Maxwell fluid near stagnation point through porous surface using Cattaneo-Christov heat flux model. Case Studies in Thermal Engineering, 48, 103155. https://doi.org/10.1016/j.csite.2023.103155

    Article  Google Scholar 

  19. Jawad, M. (2023). A computational study on magnetohydrodynamics stagnation point flow of micropolar fluids with buoyancy and thermal radiation due to a vertical stretching surface. Journal of Nanofluids, 12(3), 759–766. https://doi.org/10.1166/jon.2023.1958

    Article  Google Scholar 

  20. Rao, S., & Deka, P. N. (2023). A study on MHD flow of SWCNT-Al2O3/water hybrid nanofluid past a vertical permeable cone under the influence of thermal radiation and chemical reactions. Numerical Heat Transfer, Part A: Applications, 1–21. https://doi.org/10.1080/10407782.2023.2207731

  21. Rao, S., & Deka, P. N. (2023). A numerical study on unsteady MHD Williamson nanofluid flow past a permeable moving cylinder in the presence of thermal radiation and chemical reaction. Biointerface Research in Applied Chemistry, 13(5), 436. https://doi.org/10.33263/BRIAC135.436

    Article  Google Scholar 

  22. Suresh, S., Venkitaraj, K., Selvakumar, P., & Chandrasekar, M. (2012). Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54–60. https://doi.org/10.1016/j.expthermflusci.2011.11.007

    Article  Google Scholar 

  23. Hayat, T., & Nadeem, S. (2017). Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics, 7, 2317–2324. https://doi.org/10.1016/j.rinp.2017.06.034

    Article  Google Scholar 

  24. Sundar, L. S., Sharma, K., Singh, M. K., & Sousa, A. (2017). Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review. Renewable and Sustainable Energy Reviews, 68, 185–198. https://doi.org/10.1016/j.rser.2016.09.108

    Article  Google Scholar 

  25. Sarkar, J., Ghosh, P., & Adil, A. (2015). A review on hybrid nanofluids: Recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164–177. https://doi.org/10.1016/j.rser.2014.11.023

    Article  Google Scholar 

  26. Muneeshwaran, M., Srinivasan, G., Muthukumar, P., & Wang, C. C. (2021). Role of hybrid-nanofluid in heat transfer enhancement – A review. International Communications in Heat and Mass Transfer, 125, 105341. https://doi.org/10.1016/j.icheatmasstransfer.2021.105341

    Article  Google Scholar 

  27. Shoeibi, S., Kargarsharifabad, H., Rahbar, N., Ahmadi, G., & Safaei, M. R. (2022). Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis. Sustainable Energy Technologies and Assessments, 49, 101728. https://doi.org/10.1016/j.seta.2021.101728

    Article  Google Scholar 

  28. Sheikholeslami, M. (2022). Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Solar Energy Materials and Solar Cells, 243, 111786. https://doi.org/10.1016/j.solmat.2022.111786

    Article  Google Scholar 

  29. Kursus, M., Liew, P. J., Che Sidik, N. A., & Wang, J. (2022). Recent progress on the application of nanofluids and hybrid nanofluids in machining: A comprehensive review. The International Journal of Advanced Manufacturing Technology, 121(3–4), 1455–1481. https://doi.org/10.1007/s00170-022-09409-4

    Article  Google Scholar 

  30. Dinarvand, S., Berrehal, H., Pop, I., & Chamkha, A. J. (2022). Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: A development of Jeffery-Hamel problem. International Journal of Numerical Methods for Heat & Fluid Flow, 33(3), 1144–1160. https://doi.org/10.1108/hff-08-2022-0489

    Article  Google Scholar 

  31. Ullah, A., Fatima, N., Alharbi, K. A. M., Elattar, S., Ikramullah, I., & Khan, W. (2023). A numerical analysis of the hybrid nanofluid (Ag+TiO2+water) flow in the presence of heat and radiation fluxes. Energies, 16(3), 1220. https://doi.org/10.3390/en16031220

    Article  Google Scholar 

  32. Kuznetsov, A. (2010). The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. International Communications in Heat and Mass Transfer, 37(10), 1421–1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015

    Article  Google Scholar 

  33. Safdar, R., Gulzar, I., Jawad, M., Jamshed, W., Shahzad, F., & Eid, M. R. (2022). Buoyancy force and Arrhenius energy impacts on Buongiorno electromagnetic nanofluid flow containing gyrotactic microorganism. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(17), 9459–9471. https://doi.org/10.1177/09544062221095693

    Article  Google Scholar 

  34. Safdar, R., Jawad, M., Hussain, S., Imran, M., Akgül, A., & Jamshed, W. (2022). Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno’s model. Chinese Journal of Physics, 77, 1465–1478. https://doi.org/10.1016/j.cjph.2021.11.022

    Article  MathSciNet  Google Scholar 

  35. Jawad, M., Hameed, M. K., Majeed, A., & Nisar, K. S. (2023). Arrhenius energy and heat transport activates effect on gyrotactic microorganism flowing in maxwell bio-nanofluid with nield boundary conditions. Case Studies in Thermal Engineering, 41, 102574. https://doi.org/10.1016/j.csite.2022.102574

    Article  Google Scholar 

  36. Khan, W., & Makinde, O. (2014). MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. International Journal of Thermal Sciences, 81, 118–124. https://doi.org/10.1016/j.ijthermalsci.2014.03.009

    Article  Google Scholar 

  37. Khashi’ie, N. S., Arifin, N. M., Pop, I., & Nazar, R. (2021). Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chinese Journal of Physics, 72, 461–474. https://doi.org/10.1016/j.cjph.2021.05.011

    Article  MathSciNet  Google Scholar 

  38. Shamshuddin, M., Rajput, G. R., Jamshed, W., Shahzad, F., Salawu, S. O., Abderrahmane, A., & Patil, V. S. (2022). MHD bioconvection microorganism nanofluid driven by a stretchable plate through porous media with an induced heat source. Waves in Random and Complex Media, 1–25. https://doi.org/10.1080/17455030.2022.2126024

  39. Jawad, M. (2023). Insinuation of Arrhenius energy and solar radiation on electrical conducting Williamson nano fluids flow with swimming microorganism: Completion of Buongiorno’s model. East European Journal of Physics, 1, 135–145. https://doi.org/10.26565/2312-4334-2023-1-17

    Article  Google Scholar 

  40. Sparrow, E. M., & Cess, R. D. (1978). Radiation heat transfer (Augmented Edition (1st) ed.). Routledge. https://doi.org/10.1604/9780070599109

    Book  Google Scholar 

  41. Brewster, Q. M. (1992). Thermal radiative transfer properties solutions manual. Wiley-Interscience. https://doi.org/10.1604/9780471549222

    Book  Google Scholar 

  42. Raptis, A. (1998). Radiation and free convection flow through a porous medium. International Communications in Heat and Mass Transfer, 25(2), 289–295. https://doi.org/10.1016/s0735-1933(98)00016-5

    Article  Google Scholar 

  43. Waini, I., Ishak, A., & Pop, I. (2021). Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with Joule heating and viscous dissipation effects. Neural Computing and Applications, 34(5), 3783–3794. https://doi.org/10.1007/s00521-021-06640-0

    Article  Google Scholar 

  44. Cebeci, T., & Bradshaw, P. (1998). Physical and computational aspects of convective heat transfer. Springer Study Edition. Springer. https://doi.org/10.1007/b3711010.1007/978-1-4612-3918-5

    Book  MATH  Google Scholar 

  45. Wang, C. Y. (1989). Free convection on a vertical stretching surface. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 69, 418–420.

    Article  MATH  Google Scholar 

  46. Waini, I., Ishak, A., & Pop, I. (2019). Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer, 136, 288–297. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and figures: 1st author; analysis and interpretation of results: 2nd author; draft manuscript preparation: 1st author. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Shiva Rao.

Ethics declarations

Ethical Approval

This research project does not involve human subjects or animal experimentation. Therefore, ethics approval is not applicable. The research conducted for this project strictly adheres to ethical guidelines and principles, ensuring the highest standards of integrity and respect for all individuals involved.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S., Deka, P. Analysis of MHD Bioconvection Flow of a Hybrid Nanofluid Containing Motile Microorganisms over a Porous Stretching Sheet. BioNanoSci. 13, 2134–2150 (2023). https://doi.org/10.1007/s12668-023-01180-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01180-4

Keywords

Navigation