Skip to main content
Log in

Transient modeling and thermal analysis of an innovative dual-loop Rankine–organic Rankine heat recovery system integrated with a gas engine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Transient modeling of an innovative dual-loop Rankin–organic Rankin (RC–ORC) heat recovery and power generation system integrated with a gas engine is performed here. The transient behavior of dual-loop cycles is not investigated so far, and hence the present work is an essential tool for predicting and controlling the performance of the RC–ORC dual-loop cycle during the start-up and the gas engine load change conditions. Transient energy conservation equations for heat exchangers are solved in discretized form. Quasi-dynamic equations are also considered for pumps, steam turbines, and expanders by the use of existing empirical relations. The model is developed in MATLAB software and validated using available data. Variations with time of operational parameters are presented and analyzed for both loops of RC and ORC. The results for the start-up period show a relatively sharp increase in parameters in time interval 500–1200 s. RC evaporator working fluid outlet temperature changes from 159 to 254 °C, RC net power output changes from 147 to 308 kW, and ORC net power output changes from 165 to 300 kW. Furthermore, RC and ORC working fluid mass flow rates changes from 0.25 to 0.50 kg s−1 and from 2.2 to 4.65 kg s−1 respectively. Moreover, results show that the turbine reached the steady state condition faster (1200 s) than that for evaporator (1750 s), RC loop reached steady state condition later than ORC loop (1750 s in comparison with 1300 s), and a single-loop ORC cycle reached steady state condition faster than RC–ORC dual-loop cycle (820 s in comparison with 1750 s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(A\) :

Heat transfer surface area (m2)

\(C_\text{P}\) :

Specific heat capacity (kJ kg1 K1)

\(d\) :

Diameter of the tubes (cm)

\(h\) :

Specific enthalpy (kJ kg1)

\({\rm Ja}\) :

Jacob number

\(K\) :

Thermal conductivity (W m1 K1)

\(\dot{m}\) :

Mass flow rate (kg s1)

\({\rm Nu}\) :

Nusselt Number

\(P\) :

Pressure (Pa)

\({\rm Pr}\) :

Prandtle number

\(\dot{Q}\) :

Heat transfer rate (kW)

\({\text{Re}}\) :

Reynolds number

\(T\) :

Temperature (°C)

\(t\) :

Time (s)

\(V\) :

Volume of fluid (m3)

\(X_{{{\text{tt}}}}\) :

Martinelly factor

\(x\) :

Steam quality

\(\dot{W}\) :

Work produced/consumed rate (kW)

\(\alpha\) :

Heat transfer coefficient (W m2 K1)

\(\varepsilon\) :

Electromechanical efficiency of pump

\(\Delta\) :

Delta operator

\(\rho\) :

Density (kg m3)

\(\eta\) :

Mechanical efficiency of pump

\(\mu\) :

Dynamics viscosity (Pa. s)

\(Cond.\) :

Conduction heat transfer mechanism

\(Conv.\) :

Convection heat transfer mechanism

\(DLORC\) :

Dual-loop organic Rankine cycle

\(fa\) :

Hot or cold source fluid

\(HRSG\) :

Heat recovery steam generator

\(i\) :

Inner

\(JCW\) :

Jacket cooling water

\(ORC\) :

Organic Rankine cycle

\(o\) :

Outer

\(RC\) :

Steam Rankine cycle

\(w\) :

Tube wall

\(wf\) :

Working fluid

References

  1. Darrow K, Tidball R, Wang J, Hampson A. Catalog of Chp technologies. U.S. environmental protection agency combined heat and power agency partnership. 2017.

  2. Ping P, Yang F, Zhang H, Xing C, Zhang W, Wang Y, Yao B. Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions. Energy. 2023. https://doi.org/10.1016/j.energy.2022.125551.

    Article  Google Scholar 

  3. Ping P, Yang F, Zhang H, Xing C, Wang C, Zhang W, Wang Y. Energy, economic and environmental dynamic response characteristics of organic Rankine cycle (ORC) system under different driving cycles. Energy. 2022. https://doi.org/10.1016/j.energy.2022.123438.

    Article  Google Scholar 

  4. Li P, Yu X, Wang L, Jiang R, Yu X, Huang R, Wu J. Comparative investigations on dynamic characteristics of basic ORC and cascaded LTES-ORC under transient heat sources. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.118197.

    Article  Google Scholar 

  5. Shi P, Zhang Z, Xie L, Wu X, Liu X, Lu S, Su H. Modified hierarchical strategy for transient performance improvement of the ORC based waste heat recovery system. Energy. 2022. https://doi.org/10.1016/j.energy.2022.125067.

    Article  Google Scholar 

  6. Ping P, Yang F, Zhang H, Xing C, Pan Y, Yang H, Wang Y. A synergistic multi-objective optimization mixed nonlinear dynamic modeling approach for organic Rankine cycle (ORC) under driving cycle. Appl Therm Eng. 2023. https://doi.org/10.1016/j.applthermaleng.2023.120455.

    Article  Google Scholar 

  7. Vaupel Y, Huster WR, Holtorf F, Mhamdi A, Mitsos A. Analysis and improvement of dynamic heat exchanger models for nominal and startup operation. Energy. 2019. https://doi.org/10.1016/j.energy.2018.12.048.

    Article  Google Scholar 

  8. Wei D, Lu X, Lu Z, Gu J. Dynamic modeling and simulation of an organic Rankine cycle (ORC) system for waste heat recovery. Appl Therm Eng. 2008;28:1216–24.

    Article  Google Scholar 

  9. Zhang Y, Deng Sh, Zhao L, Lin Sh, Bai M, Wang W, Zhao D. Dynamic test and verification of model-guided ORC system. Energy Convers Manag. 2017;148:724–36.

    Google Scholar 

  10. Wang X, Shu G, Tian H, Liu P, Li X, Jing D. Dynamic response performance comparison of ranking cycles with different working fluids for waste heat recovery of internal combustion engines. Energy Procedia. 2017;105:1600–5.

    Article  Google Scholar 

  11. Marchionni M, Bianchi G, Kontakiotis AK, Pesiridis A, Tassou SA. Dynamic modeling and optimization of an ORC unit equipped with plate heat exchangers and turbomachines. Energy Procedia. 2017;129:224–31.

    Article  CAS  Google Scholar 

  12. Ni J, Wang Z, Zhao L, Zhang Y, Zhang Z, Ma M, Lin Sh. Dynamic simulation and analysis of organic Rankine cycle system for waste recovery from diesel engine. Energy Procedia. 2017;142:1274–81.

    Article  CAS  Google Scholar 

  13. Lin Sh, Zhao L, Deng Sh, Ni J, Zhang Y, Ma M. Dynamic performance investigation for two types of ORC system driven by waste heat of automotive internal combustion engine. Energy. 2019;169:958–71.

    Article  CAS  Google Scholar 

  14. Quoilin S, Aumann R, Grill A, Schuster A, Lemort V, Spliethoff H. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles. Appl Energy. 2011;88:2183–90.

    Article  CAS  Google Scholar 

  15. Xu B, Rathod D, Kulkarni Sh, Yebi A, Filipi Z, Onori S, Hoffman M. Transient dynamic modeling and validation of an organic Rankine cycle waste heat recovery system for heavy duty diesel engine applications. Appl Energy. 2017;205:260–79.

    Article  Google Scholar 

  16. Chen X, Liu Ch, Li Q, Wang X, Xu X. Dynamic analysis and control strategies of organic Rankine cycle system for waste heat recovery using zeotropic mixture as working fluid. Energy Convers Manag. 2019. https://doi.org/10.1016/j.enconman.2019.04.049.

    Article  Google Scholar 

  17. Huster WR, Vaupel Y, Mhamdi A, Mitsos A. Validated dynamic model of an organic Rankine cycle (ORC) for waste heat recovery in a diesel truck. Energy. 2018;151:647–61.

    Article  CAS  Google Scholar 

  18. Lee YR, Kuo CR, Wang C. Transient response of a 50 kW organic Rankine cycle system. Energy. 2012;48:532–8.

    Article  Google Scholar 

  19. Shu G, Wang X, Tian H, Liu P, Jing D, Li X. Scan of working fluids based on dynamic response characters for organic Rankine cycle using for engine waste heat recovery. Energy. 2017;133:609–20.

    Article  CAS  Google Scholar 

  20. Wang X, Shu G, Tian H, Liu P, Jing D, Li X. The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery. Energy. 2018;147:440–50.

    Article  CAS  Google Scholar 

  21. Olumayegun O, Wang M. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes. Fuel. 2019;249:89–102.

    Article  CAS  Google Scholar 

  22. Galindo J, Dolz V, Pascual LR, Brizard A. Dynamic modeling of an organic Rankine cycle to recover waste heat for transportation vehicles. Energy Procedia. 2017;129:192–9.

    Article  CAS  Google Scholar 

  23. Peralez J, Tona P, Sciarretta A, Dufour P, Nadri M. Optimal control of a vehicular organic Rankine cycle via dynamic programming with adaptive discretization grid. In: Proceedings of the 19th world congress, the international federation of automatic control Cape Town, South Africa. 2014.

  24. Zywica G, Kaczmarczky TZ, Ihnatowicz E, Turzyński T. Experimental investigation of the domestic CHP ORC system in transient operating conditions. Energy Procedia. 2017;129:637–43.

    Article  Google Scholar 

  25. Tong L, Enhua W, Fanxiao M, Xu Z. Dynamic simulation of an ICE-ORC combined system under various working condition. IFAC PapersOnLine. 2018;51:29–34.

    Article  Google Scholar 

  26. Zhang T, Zhu T, An W, Song X, Liu L, Liu H. Unsteady analysis of a bottoming organic Rankine cycle for exhaust heat recovery from an internal combustion engine using monte carlo simulation. Energy Convers Manag. 2016;124:357–68.

    Article  CAS  Google Scholar 

  27. Jolevski D, Bego O, Sarajcev P. Control structure design and dynamics modeling of the organic Rankine cycle system. Energy. 2017;121(193):204.

    Google Scholar 

  28. Cao Sh, Xu J, Miao Z, Liu X, Zhang M, Xie X, Li Z, Zhao X, Tang G. Steady and transient operation of an organic Rankine cycle power system. Renew Energy. 2019;133:284–94.

    Article  Google Scholar 

  29. Carraro G, Rech S, Lazzaretto A, Toniato G, Danieli P. Dynamic simulation and experiments of a low-cost small ORC unit for market applications. Energy Convers Manag. 2019. https://doi.org/10.1016/j.enconman.2019.111863.

    Article  Google Scholar 

  30. Putten HV, Colonna P. Dynamic modeling of steam power cycles: part II—simulation of a small simple Rankine cycle system. Appl Therm Eng. 2007;27:2566–82.

    Article  Google Scholar 

  31. Grelet V, Reiche T, Lemort V, Nadri M, Dufour P. Transient performance evaluation of waste heat recovery Rankine cycle based system for heavy duty trucks. Appl Energy. 2016;165:878–92.

    Article  Google Scholar 

  32. Mazzi N, Rech S, Lazzaretto A. Off-design dynamic model of a real organic Rankine cycle system fuelled by exhaust gases from industrial processes. Energy. 2015;90:537–51.

    Article  Google Scholar 

  33. Boretti AA. Transient operation of internal combustion engines with Rankine waste heat recovery systems. Appl Therm Eng. 2012;48:18–23.

    Article  CAS  Google Scholar 

  34. Collings P, Yu Z, Wang E. A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions. Appl Energy. 2016;171:581–91.

    Article  CAS  Google Scholar 

  35. Seitz D, Gehring O, Bunz C, Brunschier M, Sawodny O. Design of a nonlinear, dynamic feedforward part for the evaporator control of an organic Rankine cycle in heavy duty vehicles. IFAC-PapersOnLine. 2016;49:625–32.

    Article  Google Scholar 

  36. Seitz D, Gehring O, Bunz C, Brunschier M, Sawodny O. Dynamic model of a multi-evaporator organic rankine cycle for exhaust heat recovery in automotive applications. IFAC-PapersOnLine. 2016;49:39–46.

    Article  Google Scholar 

  37. Zhang J, Zhang W, Hou G, Fang F. Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes. Comput Math Appl. 2012;64:908–21.

    Google Scholar 

  38. Esposito MC, Pompini N, Gambarotta A. Nonlinear model predictive control of an organic Rankine cycle for exhaust waste heat recovery in automotive engines. IFAC-PapersOnLine. 2015;48:411–8.

    Article  Google Scholar 

  39. Peralez J, Tona P, Nadri M, Dufour P, Sciarretta A. Optimal control for an organic Rankine cycle on board a diesel-electric railcar. J Process Control. 2015;33:1–13.

    Article  CAS  Google Scholar 

  40. Pang K, Hung T, He Y, Feng Y, Lin C, Wong K. Developing ORC engineering simulator (ORCES) to investigate the working fluid mass flow rate control strategy and simulate long-time operation. Energy Convers Manag. 2020. https://doi.org/10.1016/j.enconman.2019.112206.

    Article  Google Scholar 

  41. Li Sh, Ma H, Li W. Dynamic performance analysis of solar organic Rankine cycle with thermal energy storage. Appl Therm Eng. 2018;129:155–64.

    Article  Google Scholar 

  42. Twomey B, Jacobs PA, Gurgenci H. Dynamic performance estimation of small-scale solar cogeneration with an organic Rankine cycle using a scroll expander. Appl Therm Eng. 2013;51:1307–16.

    Article  Google Scholar 

  43. Bamgbopa MO, Uzgoren E. Numerical analysis of an organic Rankine cycle under steady and variable heat input. Appl Energy. 2013;107:219–28.

    Article  CAS  Google Scholar 

  44. Bamgbopa MO, Uzgoren E. Quasi-dynamic model for an organic Rankine cycle. Energy Convers Manag. 2013;72:117–24.

    Article  CAS  Google Scholar 

  45. Proctor MJ, Yu W, Kirkpatrick RD, Young BR. Dynamic modelling and validation of a commercial scale geothermal organic Rankine cycle power plant. Geothermics. 2016;61:63–74.

    Article  Google Scholar 

  46. Yang F, Cho H, Zhang H, Zhang J. Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery. Appl Energy. 2017;205:1100–18.

    Article  CAS  Google Scholar 

  47. Xia XX, Wang ZQ, Zhou NJ, Hu YH, Zhang JP, Chen Y. Working fluid selection of dual-loop organic Rankine cycle using multi-objective optimization and improved grey relational analysis. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2020.115028.

    Article  Google Scholar 

  48. Sanaye S, Khakpaay N. Thermo-economic multi-objective optimization of an innovative cascaded organic Rankine cycle heat recovery and power generation system integrated with gas engine and ice thermal energy storage. J Energy Storage. 2020. https://doi.org/10.1016/j.est.2020.101697.

    Article  Google Scholar 

  49. Sanaye S, Ghaffari A. Thermo-economic multi-objective optimization of an innovative Rankine–organic Rankine dual-loop system integrated with a gas engine for higher energy/exergy efciency and lower payback period. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10753-y.

    Article  Google Scholar 

  50. Wei D, Lu X, Lu Z, Gu J. Dynamic modeling and simulation of an organic Rankine cycle (ORC) for waste heat recovery. Appl Therm Eng. 2008;28:1216–24.

    Article  Google Scholar 

  51. Bestrin R, Vermeulen AG. Mathematical modeling and analysis of vapor compression system. International Report, Eindhoven Nedherland: University of Technology; 2003.

    Google Scholar 

  52. Kakac S, Liu H. Heat exchangers selection, rating and thermal design. 3rd ed. FL: CRC Press; 2012.

    Book  Google Scholar 

  53. Sanaye S, Refahi A. A novel configuration of ejector refrigeration cycle coupled with organic Rankine cycle for transformer and space cooling applications. Int J Refrig. 2020. https://doi.org/10.1016/j.ijrefrig.2020.02.005.

    Article  Google Scholar 

  54. Ng KC, Bong TY, Lim TB. A thermodynamic model for the analysis of screw expander performance. Heat Recovery Syst CHP. 1990;10:119–33.

    Article  Google Scholar 

  55. Tummescheit H. Design and implementation of object-oriented model libraries using Modelica. [doctoral thesis (monograph), department of automatic control], department of automatic control, Lund Institute of Technology LTH,. 2002.

  56. https://www.cat.com/en_US/products/new/power-systems/industrial/gas-engines.html.

  57. Vaja I. Definition of an object oriented library for the dynamic simulation of advanced energy systems: methodologies, tools and application to combine ICE–ORC power plants. Università di Parma, Dipartimento di Ingegneria Industria, PhD dissertation, 2009.

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepehr Sanaye.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Heat transfer coefficients in heat exchangers

Appendix 1 Heat transfer coefficients in heat exchangers

See Tables

Table 10 Convective heat transfer coefficient in evaporator

10,

Table 11 Convective heat transfer coefficient in condenser, economizer, superheater and preheater

11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanaye, S., Ghaffari, A. Transient modeling and thermal analysis of an innovative dual-loop Rankine–organic Rankine heat recovery system integrated with a gas engine. J Therm Anal Calorim 148, 10951–10971 (2023). https://doi.org/10.1007/s10973-023-12435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12435-3

Keywords

Navigation