Skip to main content
Log in

A combined ReaxFF simulation and TG-MS study on the thermal decomposition mechanism of 5,5ʹ-dinitramino-3,3ʹ-bi[1,2,4-triazolate] carbohydrazide salt (CBNT)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetry coupled with mass spectrometry (TG-MS) and ReaxFF molecular dynamics (MD) simulations are firstly applied to study the thermal decomposition mechanism of 5,5ʹ-dinitramino-3,3ʹ-bi[1,2,4-triazolate] carbohydrazide salt (CBNT). ReaxFF MD simulations are applied to investigate the primary chemical reactions, decomposition products and decomposition rate, respectively. Experimentally, TG-MS techniques are adopted to identify the final gaseous products decomposed by CBNT. Both TG-MS measured results and ReaxFF MD simulated results show that the final stable gaseous products are mainly NH3, H2O, N2 and CO2. The main intermediates and chemical reactions during the decomposition process are obtained by ReaxFF MD simulations as well. According to the simulation and experimental results, the most probable thermal decomposition path of CBNT is obtained. The initial decomposition step of CBNT is the dissociation of N−NO2 and N−NH3 bonds to generate NO2 and NH3, followed by the cleavage of the C−N bonds, and resulting in the formulation of the ring structure. After the main reactions of carbazide cations and bistriazole anions, high-frequency reactions primarily occur between the unstable intermediate products and finally produces small stable molecules such as NH3, H2O, N2 and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang RH, Xu HY, Guo Y, Sa RJ, Shreeve JM. Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J Am Chem Soc. 2010;132:11904–5.

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Jin SH, Lan GC, Chen K, Liu W, Zhang XP, Chen SS, Li LJ. A molecular dynamics study and detonation parameters calculation of 5,5’-dinitramino-3,3’-bi[1,2,4-triazolate] carbohydrazide salt (CBNT) and its PBXs. J Energ Mater. 2020;38:283–94.

    Article  Google Scholar 

  3. Li J, Jin SH, Lan GC, Zhang XP, Wang J, Chen SS, Lu BP, Chen K. Measurement and correlation of solubilities of 5,5′-dinitramino-3,3′-bi[1,2,4-triazolate] carbohydrazide salt (CBNT) in various pure solvents and a binary mixture (dimethyl sulfoxide + water) from 298.15 to 343.15 K. J Chem Eng Data. 2019;64:3874–81.

    Article  CAS  Google Scholar 

  4. Hiskey MA, Chavez DE (2001) Insensitive high nitrogen compounds. DE20012776133, 2001–56–168

  5. Lei YP, Xu SL, Yang SQ. New research progress in application of high-nitrogen energetic compound. Chem Propell Polymer Mater. 2007;5:1–7.

    Google Scholar 

  6. He P, Yang JQ, Li T, Zhang JG. Overview on the quantum chemical methods for energetic materials. Chin J Energ Mater. 2018;26:34–45.

    CAS  Google Scholar 

  7. Zhang YF. Studies on synthesis of energetic compounds derived from azoles. Nanjing: Nanjing University of Science & Technology; 2016.

    Google Scholar 

  8. Chen ZY, Wang XJ, Guo RJ, Li ZH, He YY, Zhang SH. Molecular dynamics simulation on the interface interactions of CBNT and polymers. Chin J Explos Propell. 2018;41:479–505.

    Google Scholar 

  9. Wang XJ, Zhang XP, Lu ZY, Wang X, Jin SH, Chen SS. Synthesis and properties of 5,5’-dinitramino-3,3’-bi[1,2,4-triazolate] carbohydrazide salt. Chin J Energ Mater. 2016;24:353–6.

    CAS  Google Scholar 

  10. Huang XC, Guo T, Liu M, Wang ZJ, Qiu SJ, Ge ZX. Review on bis-azoles and its energetic ion derivatives. Chin J Energ Mater. 2015;23:291–301.

    CAS  Google Scholar 

  11. Yang SQ, Xu SL, Huang HJ, Zhang W, Zhang XG. High nitrogen compounds and their energy materials. Prog Chem. 2008;20:526–37.

    CAS  Google Scholar 

  12. Klapotke TM, Stierstorfer J, Wallek AU. Nitrogen-rich salts of 1-methyl-5-nitriminotetrazolate: an auspicious class of thermally stable energetic materials. Chem Mater. 2008;20:4519–30.

    Article  Google Scholar 

  13. Klapotke TM, Sabate CM. Bistetrazoles: nitrogen-rich, high-performing, insensitive energetic compounds. Chem Mater. 2008;20:3629–37.

    Article  Google Scholar 

  14. Chavez DE, Hiskey MA, Naud DL. Tetrazine explosives. Propell Explos Pyrot. 2004;29:209–15.

    Article  CAS  Google Scholar 

  15. Huang YG, Gao HX, Twamley B, Shreeve JM. Synthesis and characterization of new energetic nitroformate salts. Eur J Inorg Chem. 2007;16:2560–8.

    Google Scholar 

  16. Gao HX, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.

    Article  CAS  PubMed  Google Scholar 

  17. Guo YY, Ye ZW. Progress in synthesis of energetic ionic salts of triazole and tetrazole compounds. Chin J Appl Chem. 2013;30:489–99.

    CAS  Google Scholar 

  18. Huang HF, Zhou ZM. Progress of study on organic anion based energetic salts. Chin J Explos Propell. 2012;35:1–10.

    Google Scholar 

  19. Lan G, Zhang G, Chao H, Li Z, Wang J, Li J. Ameliorating the performances of 3,4-bis(4′-nitrofurazano-3′-yl)furoxan (DNTF) by establishing tannic acid (TA) interface layer on DNTF surface. Chem Eng J. 2022;434:134513.

    Article  CAS  Google Scholar 

  20. Zhang L, Zybin SV, Duin ACT, Dasgupta S, Goddard WA, Kober EM. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. J Phys Chem A. 2009;113:10619–40.

    Article  CAS  PubMed  Google Scholar 

  21. Lan G, Li J, Zhang G, Ruan J, Lu Z, Jin S, Cao D, Wang J. Thermal decomposition mechanism study of 3-nitro-1,2,4-triazol-5-one (NTO): Combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations. Fuel. 2021;295:120655.

    Article  CAS  Google Scholar 

  22. Wen YS, Zhang CY, Xue XG, Long XP. Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, beta-HMX and PETN by molecular reactive force field simulations. Phys Chem Chem Phys. 2015;17:12013–22.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Li F, Sun H. Thermal decomposition of FOX-7 studied by ab initio molecular dynamics simulations. Theor Chem Acc. 2014;133:1567.

    Article  Google Scholar 

  24. Zhang M, Li CF, Zhao FQ, Xu SY, Ju XH. Reactive molecular dynamics simulation of thermal decomposition for nano-AlH3/TNT and nano-AlH3/CL-20 composites. J Mater Sci. 2019;54:7016–27.

    Article  Google Scholar 

  25. Li J, Jin SH, Lan GC, Chen SS, Shu QH, Li LJ, Chen K. Reactive molecular dynamics simulations on the thermal decompositions and oxidations of TKX-50 and twinned TKX-50. CrystEngComm. 2020;22:2593–600.

    Article  CAS  Google Scholar 

  26. Wang FP, Chen L, Geng DS, Wu JY, Lu JY, Wang C. Thermal decomposition mechanism of CL-20 at different temperatures by ReaxFF reactive molecular dynamics simulations. J Phys Chem A. 2018;122:3971–9.

    Article  CAS  PubMed  Google Scholar 

  27. Xie W, Heltsley R, Cai XH, Deng FQ, Liu JM, Lee C, Pan WP. Study of stability of high-temperature polyimides using TG/MS technique. J Appl Polym Sci. 2002;83:1219–27.

    Article  CAS  Google Scholar 

  28. Perng LH. Thermal decomposition characteristics of poly(ether imide) by TG/MS. J Polym Res. 2000;7:185–93.

    Article  CAS  Google Scholar 

  29. Dong LM, Li XD, Yang RJ. Thermal decomposition study of HNIW by synchrotron photoionization mass spectrometry. Propell Explos Pyrot. 2011;36:493–8.

    Article  CAS  Google Scholar 

  30. Liang B, Wang JB, Hu JH, Li CF, Li RK, Liu Y, Zeng K. TG-MS-FTIR study on pyrolysis behavior of phthalonitrile resin. Polym Degrad Stabil. 2019;169:108954.

    Article  CAS  Google Scholar 

  31. Lisa G, Yoshitake Y, Michinobu T. Thermal degradation of some ferrocene-containing poly(aryleneethynylene)s. J Anal Appl Pyrol. 2016;120:399–408.

    Article  CAS  Google Scholar 

  32. Liu LC, Liu Y, Zybin SV, Sun H, Goddard WA. ReaxFF-lg: Correction of the ReaxFF reactive force field for london dispersion, with applications to the equations of state for energetic materials. J Phys Chem A. 2011;115:11016–22.

    Article  CAS  PubMed  Google Scholar 

  33. Strachan A, Duin ACT, Chakraborty D, Dasgupta S, Goddard WA. Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Phys Rev Lett. 2003;91:098301.

    Article  PubMed  Google Scholar 

  34. Rom N, Zybin SV, Duin ACT, Goddard WA, Zeiri Y, Katz G, Kosloff R. Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF. J Phys Chem A. 2011;115:10181–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., she, C., Yang, C. et al. A combined ReaxFF simulation and TG-MS study on the thermal decomposition mechanism of 5,5ʹ-dinitramino-3,3ʹ-bi[1,2,4-triazolate] carbohydrazide salt (CBNT). J Therm Anal Calorim 148, 10885–10896 (2023). https://doi.org/10.1007/s10973-023-12432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12432-6

Keywords

Navigation