Skip to main content
Log in

Flame retardant effect of aluminum phytate in huntite–hydromagnesite filled plasticized poly(lactic acid) compounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current study, aluminum phytate (AlPt) is used with huntite–hydromagnesite (HH) in plasticized poly(lactic acid) (PLA) in order to improve the fire-retardant performance of the composite. The flame retardant, thermal, and mechanical properties of the composites are investigated using the limiting oxygen index (LOI), horizontal and vertical burning test (UL-94), mass loss calorimeter, thermogravimetric analysis, tensile, and impact tests. According to the test results, the fire-retardant performance of the composite was improved when HH and AlPt were used together. The highest LOI value (33.8) and UL-94 rating of V0 were achieved with the addition of 5 mass% AlPt in the presence of 55 mass% HH. Further, the addition of AlPt did not change the flammability properties. AlPt showed its adjuvant effect predominantly in the condensed phase via improved char formation with enhanced barrier properties. Tensile and impact strength reduced as the added amount of AlPt increased due to the hydrolytic degradation of PLA during the extrusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Graf E. Applications of phytic acid. J Am Oil Chem Soc. 1983;60:1861–7.

    Article  CAS  Google Scholar 

  2. Kremer C, Torres J, Bianchi A, Savastano M, Bazzicalupi C. Myo-inositol hexakisphosphate: coordinative versality of a natural product. Coord Chem Rev. 2020;419:1–19.

    Article  Google Scholar 

  3. Crea F, De Stefano C, Milea D, Sammartano S. Formation and stability of phytate complexes in solution. Coord Chem Rev. 2008;252:1108–20.

    Article  CAS  Google Scholar 

  4. Malucelli G. Flame retardant systems based on chitosan and its derivatives: state of the art and perspectives. Molecules. 2020;25:4046–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang H, Yu B, Xu X, Bourbigot S, Wang H, Song P. Lignin-derived biobased flame retardants toward high performance sustainable polymeric materials. Green Chem. 2020;22:2129–61.

    Article  CAS  Google Scholar 

  6. Lazar ST, Kolibaba TJ, Grunlan JC. Flame retardant surface treatments. Nat Rev Mater. 2020;5:259–75.

    Article  CAS  Google Scholar 

  7. Watson DAV, Schiraldi DA. Biomolecules as flame retardant additives for polymers: a review. Polymers. 2020;12:849–80.

    Article  Google Scholar 

  8. Hobbs CE. Recent advances in bio-based flame retardant additives for synthetic polymeric materials. Polymers. 2019;11:224–55.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Costes L, Laoutid F, Brohez S, Dubois P. Bio-based flame retardants: when nature meets fire protection. Mater Sci Eng R. 2017;117:1–25.

    Article  Google Scholar 

  10. Zhan Y, Yuan B, Shang S. Synergistic effect of layered melamine-phytate and intumescent flame retardant on enhancing fire safety of polypropylene. J Therm Anal Calorim. 2022;147(285):295.

    Google Scholar 

  11. Xu Y, Li J, Shen R, Wang Z, Hu P, Wang Q. Experimental study on the synergistic flame retardant effect of bio-based magnesium phytate and rice husk ash on epoxy resins. J Therm Anal Calorim. 2021;146:153–64.

    Article  CAS  Google Scholar 

  12. Kong F, He Q, Peng W, Nie S, Dong X, Yang J. Eco-friendly flame retardant poly (lactic acid) composites based on banana peel powders and phytic acid: flame retardancy and thermal property. J Polym Res. 2020;27:204–19.

    Article  CAS  Google Scholar 

  13. Xang YX, Haurie L, Zhang J, Zhang XQ, Wang R, Wang DY. Effect of bio-based phytate (PA-THAM) on the flame retardant and mechanical properties of polylactide (PLA). Express Polym Lett. 2020;14:705–16.

    Article  Google Scholar 

  14. Jin X, Cui S, Sun S, Gu X, Li H, Liu X, Tang W, Sun J, Bourbigot S, Zhang S. The preparation of a bio-polyelectrolytes based core-shell structure and its application in flame retardant polylactic acid composites. Compos Part A Appl Sci Manuf. 2019;124:105485–95.

    Article  CAS  Google Scholar 

  15. Rosely CVS, Joseph AM, Leuteritz A, Gowd EB. Phytic acid modified boron nitride nanosheets as sustainable multifunctional nanofillers for enhanced propertiesof poly (l-lactide). ACS Sustain Chem Eng. 2020;8:1868–78.

    Article  CAS  Google Scholar 

  16. Jin X, Gu X, Chen C, Tang W, Li H, Liu X, Bourbigot S, Zhang Z, Sun J, Zhang S. The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides. J Mater Sci. 2017;52:12235–50.

    Article  CAS  Google Scholar 

  17. Cheng L, Wu W, Meng W, Xu S, Han H, Yu Y, Qu H, Xu J. Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants. J Appl Polym Sci. 2018;135:46601–11.

    Article  Google Scholar 

  18. Yang W, Tawiah B, Yu C, Qian YF, Wang LL, Yuen AC, Zhu S, Hu E, Chen BT, Yu B, Lu H, Yeoh HG, Wang X, Song L, Hu Y. Manufacturing, mechanical and flame retardant properties of poly (lactic acid) biocomposites based on calcium magnesium phytate and carbon nanotubes. Compos Part A Appl Sci Manuf. 2018;110:227–36.

    Article  CAS  Google Scholar 

  19. Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P. Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J. 2016;74:218–28.

    Article  CAS  Google Scholar 

  20. Costes L, Laoutid F, Dumazert L, Lopez-cuesta JM, Brohez S, Delvosalle C, Dubois P. Metallic phytates as efficient bio-based phosphorus flame retardant additives for poly(lactic acid). Polym Degrad Stabil. 2015;119:217–27.

    Article  CAS  Google Scholar 

  21. Ma D, Zhao P, Li J. Effects of zinc phytate on flame retardancy and thermal degradation behaviors of intumescent flame retardant polypropylene. Polym Plast Technol Eng. 2017;56:1167–76.

    Article  CAS  Google Scholar 

  22. Meng W, Wu W, Zhang W, Cheng L, Han X, Xu J, Qu H. Bio-based Mg(OH)2@M-Phyt: improving the flame-retardant and mechanical properties of flexible poly(vinyl chloride). Polym Int. 2019;68:1759–66.

    Article  CAS  Google Scholar 

  23. Meng W, Dong Y, Li J, Cheng L, Zhang H, Wang C, Jiao Y, Xu J, Hao J, Qu H. Bio-based phytic acid and tannic acid chelate-mediated interfacial assembly of Mg(OH)2 for simultaneously improved flame retardancy, smoke suppression and mechanical properties of PVC. Compos B Eng. 2020;188: 107854.

    Article  CAS  Google Scholar 

  24. Hollingbery L, Hull T. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta. 2010;509:1–11.

    Article  CAS  Google Scholar 

  25. Hollingbery L, Hull T. The fire retardant behaviour of huntite and hydromagnesite–a review. Polym Degrad Stab. 2010;95:2213–25.

    Article  CAS  Google Scholar 

  26. Hull TR, Witkowski A, Hollingbery L. Fire retardant action of mineral fillers. Polym Degrad Stab. 2011;96:1462–9.

    Article  CAS  Google Scholar 

  27. Savas LA, Deniz TK, Tayfun U, Dogan M. Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polym Degrad Stab. 2017;135:121–9.

    Article  CAS  Google Scholar 

  28. Guler T, Tayfun U, Bayramlı E, Dogan M. Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Thermochim Acta. 2017;647:70–80.

    Article  CAS  Google Scholar 

  29. Ustaömer D, Baser UE. Thermal and fire properties of medium-density fiberboard prepared with huntite/hydromagnesite and zinc borate. Biosources. 2020;15:5940–50.

    Google Scholar 

  30. Atay HY, Celik E. Flame retardant properties of boric acid and antimony oxide accompanying with huntite and hydromagnesite in the polymer composites. Polym Polym Compos. 2016;24:419–28.

    CAS  Google Scholar 

  31. Toure B, Lopez Cuesta JM, Gaudon P, Benhassaine A, Crespy A. Fire resistance and mechanical properties of a huntite/hydromagnesite/antimony trioxide/decabromodiphenyl oxide filled PP-PE copolymer. Polym Degrad Stab. 1996;53:371–9.

    Article  CAS  Google Scholar 

  32. Yurddaskal M, Nil M, Ozturk Y, Celik E. Synergetic effect of antimony trioxide on the flame retardant and mechanical properties of polymer composites for consumer electronics applications. J Mater Sci Mater Electron. 2018;29:4557–63.

    Article  CAS  Google Scholar 

  33. Erdem A, Dogan M. Production and characterization of green flame retardant poly(lactic acid) composites. J Polym Environ. 2020;28:2837–50.

    Article  CAS  Google Scholar 

  34. Erdem A, Dogan M. Development of ductile green flame retardant poly(lactic acid) composites using hydromagnesite&huntite and bio-based plasticizer. J Vinyl Addit Technol. 2023. https://doi.org/10.1002/vnl.21976.

    Article  Google Scholar 

  35. Sakai H, Ikemoto Y, Kinoshita T, Moriwaki T, Yoshida KT. Fourrier-transform spectra of metal salts of phytic acid in the mid to far infrared spectral range. Vib Spectrosc. 2017;92:215–9.

    Article  CAS  Google Scholar 

  36. He Z, Honeycutt CW, Zhang T, Bertsch PM. Preparation and FTIR characterization of metal phytate compounds. J Environ Qual. 2006;35:1319–28.

    Article  CAS  PubMed  Google Scholar 

  37. Daneluti ALM, Matos JR. Study of thermal behavior of phytic acid. Braz J Pharm Sci. 2013;49:275–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is granted by the Turkish Scientific and Technological Research Council (TUBITAK) with the project number of 118M203. Aysegul Erdem gets scholarship from Council of Higher Education (YOK) in the scope of the doctorate program of 100/2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Dogan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, A., Dogan, M. Flame retardant effect of aluminum phytate in huntite–hydromagnesite filled plasticized poly(lactic acid) compounds. J Therm Anal Calorim 148, 10835–10841 (2023). https://doi.org/10.1007/s10973-023-12416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12416-6

Keywords

Navigation