Skip to main content
Log in

A comprehensive review on recent developments, applications and future aspects of heat pipe-assisted solar collectors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solar energy offers a sustainable solution to address the increasing energy demand and environmental concerns in both industrial and domestic applications. To enhance the efficiency of solar collectors, researchers have integrated heat pipes, which are passive devices for effectively transferring heat to a working fluid. This integration has a wide range of applications for solar thermal collectors, including water and space heating, drying processes, and desalination. Conventional solar collectors have limitations in high-temperature applications. When heat pipes are integrated with these collectors, they have demonstrated a higher temperature range and improved performance. This paper presents a comprehensive review of the various techniques and innovations adopted by researchers over the last few decades to maximize the thermal performance of heat pipe solar collectors (HPSC). The review begins by covering the fundamental concept and working principle of heat pipes. Heat pipes are sealed copper tubes with an inner wick structure and a small amount of working fluid. Researchers have explored several techniques and innovations to enhance the thermal performance of HPSC. These include optimizing geometrical parameters such as length, diameter, and orientation of heat pipes to maximize heat transfer. Improvements in wick structure design and the selection of working fluids have also been investigated to enhance heat transfer efficiency. This review provides an overview of the techniques and innovations employed by researchers to enhance the efficiency of heat pipe solar collectors. By addressing the identified research gaps, further advancements can be achieved in maximizing the thermal performance of HPSC, leading to more efficient utilization of solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Abd-Elhady MS, Nasreldin M, Elsheikh MN. Improving the performance of evacuated tube heat pipe collectors using oil and foamed metals. Ain Shams Eng J. 2018;9:2683–9. https://doi.org/10.1016/j.asej.2017.10.001.

    Article  Google Scholar 

  2. Abo-Elfadl S, Hassan H, El-Dosoky MF. Energy and exergy assessment of integrating reflectors on thermal energy storage of evacuated tube solar collector-heat pipe system. Sol Energy. 2020;209:470–84. https://doi.org/10.1016/j.solener.2020.09.009.

    Article  Google Scholar 

  3. Al-Waeli, A.H.A., Kazem, H.A., Chaichan, M.T., Sopian, K., 2019. Photovoltaic/thermal (PV/T) systems: principles, design, and applications, photovoltaic/thermal (PV/T) systems: principles, design, and applications. https://doi.org/10.1007/978-3-030-27824-3

  4. Alammar AA, Al-Dadah RK, Mahmoud SM. Numerical investigation of effect of fill ratio and inclination angle on a thermosiphon heat pipe thermal performance. Appl Therm Eng. 2016;108:1055–65. https://doi.org/10.1016/j.applthermaleng.2016.07.163.

    Article  Google Scholar 

  5. Allouhi A, Benzakour Amine M, Buker MS, Kousksou T, Jamil A. Forced-circulation solar water heating system using heat pipe-flat plate collectors: Energy and exergy analysis. Energy. 2019;180:429–43. https://doi.org/10.1016/j.energy.2019.05.063.

    Article  Google Scholar 

  6. Alshukri MJ, Eidan AA, Najim SI. Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location. Renew Energy. 2021;171:635–46. https://doi.org/10.1016/j.renene.2021.02.143.

    Article  CAS  Google Scholar 

  7. Alshukri MJ, Eidan AA, Najim SI. The influence of integrated Micro-ZnO and Nano-CuO particles/paraffin wax as a thermal booster on the performance of heat pipe evacuated solar tube collector. J Energy Storage. 2021;37:102506. https://doi.org/10.1016/j.est.2021.102506.

    Article  Google Scholar 

  8. Andraka CE, Kruizenga AM, Hernandez-sanchez BA, Coker EN. Metallic phase change material thermal storage for dish stirling. Energy Procedia. 2015;69:726–36. https://doi.org/10.1016/j.egypro.2015.03.083.

    Article  CAS  Google Scholar 

  9. Arab M, Soltanieh M, Shafii MB. Experimental investigation of extra-long pulsating heat pipe application in solar water heaters. Exp Therm Fluid Sci. 2012;42:6–15. https://doi.org/10.1016/j.expthermflusci.2012.03.006.

    Article  Google Scholar 

  10. Aref L, Fallahzadeh R, Reza S, Hosseinzadeh M. A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector. Energy. 2021;230:120751. https://doi.org/10.1016/j.energy.2021.120751.

    Article  Google Scholar 

  11. Azad E. Theoretical and experimental investigation of heat pipe solar collector. Exp Therm Fluid Sci. 2008;32:1666–72. https://doi.org/10.1016/j.expthermflusci.2008.05.011.

    Article  CAS  Google Scholar 

  12. Bastakoti D, Zhang H, Li D, Cai W, Li F. An overview on the developing trend of pulsating heat pipe and its performance. Appl Therm Eng. 2018;141:305–32. https://doi.org/10.1016/j.applthermaleng.2018.05.121.

    Article  Google Scholar 

  13. Bazri S, Badruddin IA, Usmani AY, Anwar Khan S, Kamangar S, Naghavi MS, Rahman Mallah A, Abdelrazek AH. Thermal hysteresis analysis of finned-heat-pipe-assisted latent heat thermal energy storage application for solar water heater system. Case Stud Therm Eng. 2022;40:102490. https://doi.org/10.1016/j.csite.2022.102490.

    Article  Google Scholar 

  14. Bhagwat VV, Roy S, Das B, Shah N, Chowdhury A. Performance of finned heat pipe assisted parabolic trough solar collector system under the climatic condition of North East India. Sustain Energy Technol Assessments. 2021;45:101171. https://doi.org/10.1016/j.seta.2021.101171.

    Article  Google Scholar 

  15. Bhuwakietkumjohn N, Rittidech S. Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture. Exp Therm Fluid Sci. 2010;34:1000–7. https://doi.org/10.1016/j.expthermflusci.2010.03.003.

    Article  CAS  Google Scholar 

  16. Brahim T, Dhaou MH, Jemni A. Theoretical and experimental investigation of plate screen mesh heat pipe solar collector. Energy Convers Manag. 2014;87:428–38. https://doi.org/10.1016/j.enconman.2014.07.041.

    Article  CAS  Google Scholar 

  17. Chamsa-ard W, Sukchai S, Sonsaree S, Sirisamphanwong C. Thermal performance testing of heat pipe evacuated tube with compound parabolic concentrating Solar collector BY ISO 9806–1. Energy Procedia. 2014;56:237–46. https://doi.org/10.1016/j.egypro.2014.07.154.

    Article  Google Scholar 

  18. Chaudhry HN, Hughes BR, Ghani SA. A review of heat pipe systems for heat recovery and renewable energy applications. Renew Sustain Energy Rev. 2012;16:2249–59. https://doi.org/10.1016/j.rser.2012.01.038.

    Article  CAS  Google Scholar 

  19. Chen H, Zhang H, Li M, Liu H, Huang J. Experimental investigation of a novel LCPV/T system with micro-channel heat pipe array. Renew Energy. 2018;115:773–82. https://doi.org/10.1016/j.renene.2017.08.087.

    Article  Google Scholar 

  20. Chen H, Zhang L, Jie P, Xiong Y, Xu P, Zhai H. Performance study of heat-pipe solar photovoltaic/thermal heat pump system. Appl Energy. 2017;190:960–80. https://doi.org/10.1016/j.apenergy.2016.12.145.

    Article  Google Scholar 

  21. Chen Y, He Y, Zhu X. Flower-type pulsating heat pipe for a solar collector. Int J Energy Res. 2020;44:7734–45. https://doi.org/10.1002/er.5505.

    Article  Google Scholar 

  22. Chernysheva MA, Pastukhov VG, Maydanik YF. Analysis of heat exchange in the compensation chamber of a loop heat pipe. Energy. 2013;55:253–62. https://doi.org/10.1016/j.energy.2013.04.014.

    Article  CAS  Google Scholar 

  23. Chopra K, Tyagi VV, Pathak AK, Pandey AK, Sari A. Experimental performance evaluation of a novel designed phase change material integrated manifold heat pipe evacuated tube solar collector system. Energy Convers Manag. 2019;198:111896. https://doi.org/10.1016/j.enconman.2019.111896.

    Article  Google Scholar 

  24. Reay DA, Kew PA, McGlen RJ 2019. Chapter 3: historical developments. 73–112. https://doi.org/10.31826/9781463235796-005

  25. Dewangan D, Ekka JP, Arjunan TV. Solar photovoltaic thermal system: a comprehensive review on recent design and development, applications and future prospects in research. Int J Ambient Energy. 2022;43:7247–71. https://doi.org/10.1080/01430750.2022.2063386.

    Article  Google Scholar 

  26. Diallo TMO, Yu M, Zhou J, Zhao X, Shittu S, Li G, Ji J, Hardy D. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy. 2019;167:866–88. https://doi.org/10.1016/j.energy.2018.10.192.

    Article  Google Scholar 

  27. Eldin SAS, Abd-Elhady MS, Kandil HA. Feasibility of solar tracking systems for PV panels in hot and cold regions. Renew Energy. 2016;85:228–33. https://doi.org/10.1016/j.renene.2015.06.051.

    Article  Google Scholar 

  28. Eltaweel, M., Abdel-rehim, A.A., Attia, A.A.A., 2020. Energetic and exergetic analysis of a heat pipe evacuated tube solar collector using MWCNT / water nanofluid. Case Stud. Therm. Eng. 22

  29. Ersöz MA. Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe. Renew Energy. 2016;96:244–56. https://doi.org/10.1016/j.renene.2016.04.058.

    Article  CAS  Google Scholar 

  30. Essa MA, Rofaiel IY, Ahmed MA. Experimental and theoretical analysis for the performance of evacuated tube collector integrated with helical finned heat pipes using PCM energy storage. Energy. 2020;206:118166. https://doi.org/10.1016/j.energy.2020.118166.

    Article  Google Scholar 

  31. Faegh M, Shafii MB. Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes. Desalination. 2017;409:128–35. https://doi.org/10.1016/j.desal.2017.01.023.

    Article  CAS  Google Scholar 

  32. Faghri A. Heat pipes: review, opportunities and challenges. Front Heat Pipes. 2014. https://doi.org/10.5098/fhp.5.1.

    Article  Google Scholar 

  33. Fallahzadeh R, Aref L, Gholamiarjenaki N, Nonejad Z, Saghi M. Experimental investigation of the effect of using water and ethanol as working fluid on the performance of pyramid-shaped solar still integrated with heat pipe solar collector. Sol Energy. 2020;207:10–21. https://doi.org/10.1016/j.solener.2020.06.032.

    Article  CAS  Google Scholar 

  34. Fathabadi H. Novel low-cost parabolic trough solar collector with TPCT heat pipe and solar tracker: Performance and comparing with commercial flat-plate and evacuated tube solar collectors. Sol Energy. 2020;195:210–22. https://doi.org/10.1016/j.solener.2019.11.057.

    Article  CAS  Google Scholar 

  35. Gang P, Huide F, Jie J, Tin-tai C, Tao Z. Annual analysis of heat pipe PV / T systems for domestic hot water and electricity production. Energy Convers Manag. 2012;56:8–21. https://doi.org/10.1016/j.enconman.2011.11.011.

    Article  Google Scholar 

  36. Gang P, Huide F, Tao Z, Jie J. A numerical and experimental study on a heat pipe PV/T system. Sol Energy. 2011;85:911–21. https://doi.org/10.1016/j.solener.2011.02.006.

    Article  Google Scholar 

  37. Grissa K, Benselama AM, Romestant C, Bertin Y, Grissa K, Lataoui Z, Jemni A. Performance of a cylindrical wicked heat pipe used in solar collectors: Numerical approach with Lattice Boltzmann method. Energy Convers Manag. 2017;150:623–36. https://doi.org/10.1016/j.enconman.2017.08.038.

    Article  CAS  Google Scholar 

  38. Han X, Zhao X, Chen X. Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renew Energy. 2020;162:55–70. https://doi.org/10.1016/j.renene.2020.07.131.

    Article  CAS  Google Scholar 

  39. Hao T, Ma H, Ma X. Heat transfer performance of polytetrafluoroethylene oscillating heat pipe with water, ethanol, and acetone as working fluids. Int J Heat Mass Transf. 2019;131:109–20. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.133.

    Article  CAS  Google Scholar 

  40. He W, Hong X, Zhao X, Zhang X, Shen J, Ji J. Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe façade-based heat pump water heating system. Energy Build. 2014;77:180–91. https://doi.org/10.1016/j.enbuild.2014.03.053.

    Article  Google Scholar 

  41. Höhne T. CFD simulation of a heat pipe using the homogeneous model. Int J Thermofluids. 2022. https://doi.org/10.1016/j.ijft.2022.100163.

    Article  Google Scholar 

  42. Hou L, Quan Z, Zhao Y, Wang L, Wang G. An experimental and simulative study on a novel photovoltaic-thermal collector with micro heat pipe array (MHPA-PV/T). Energy Build. 2016;124:60–9. https://doi.org/10.1016/j.enbuild.2016.03.056.

    Article  Google Scholar 

  43. Huang BJ, Chong TL, Wu PH, Dai HY, Kao YC. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe. Desalination. 2015;362:74–83. https://doi.org/10.1016/j.desal.2015.02.011.

    Article  CAS  Google Scholar 

  44. Huang HJ, Shen SC, Shaw HJ. Design and fabrication of a novel hybrid-structure heat pipe for a concentrator photovoltaic. Energies. 2012;5:4340–9. https://doi.org/10.3390/en5114340.

    Article  CAS  Google Scholar 

  45. Huang X, Wang Q, Yang H, Zhong S, Jiao D, Zhang K, Li M, Pei G. Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector. Renew Energy. 2019;138:999–1009. https://doi.org/10.1016/j.renene.2019.02.008.

    Article  Google Scholar 

  46. Hudon, K., 2013. Solar Energy - Water Heating. Futur. Energy Improv. Sustain. Clean Options our Planet, 45: 433–451. https://doi.org/10.1016/B978-0-08-099424-6.00020-X

  47. Hussein AK. Applications of nanotechnology to improve the performance of solar collectors - recent advances and overview. Renew Sustain Energy Rev. 2016;62:767–92. https://doi.org/10.1016/j.rser.2016.04.050.

    Article  Google Scholar 

  48. Hussein AK, Li D, Kolsi L, Kata S, Sahoo B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia. 2017;109:417–24. https://doi.org/10.1016/j.egypro.2017.03.044.

    Article  CAS  Google Scholar 

  49. Hussein HMS, El-Ghetany HH, Nada SA. Performance of wickless heat pipe flat plate solar collectors having different pipes cross sections geometries and filling ratios. Energy Convers Manag. 2006;47:1539–49. https://doi.org/10.1016/j.enconman.2005.08.009.

    Article  CAS  Google Scholar 

  50. Ismail KAR, Abogderah MM. Performance of a heat pipe solar collector. J Sol Energy Eng Trans ASME. 1998;120:51–9. https://doi.org/10.1115/1.2888047.

    Article  CAS  Google Scholar 

  51. Jack S, Parzefall J, Luttmann T, Janßen P, Giovannetti F. Flat plate aluminum heat pipe collector with inherently limited stagnation temperature. Energy Procedia. 2014;48:105–13. https://doi.org/10.1016/j.egypro.2014.02.013.

    Article  CAS  Google Scholar 

  52. Jafarkazemi F, Abdi H. Evacuated tube solar heat pipe collector model and associated tests. J Renew Sustain Energy. 2012. https://doi.org/10.1063/1.3690958.

    Article  Google Scholar 

  53. Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel LC. Heat pipe based systems - advances and applications. Energy. 2017;128:729–54. https://doi.org/10.1016/j.energy.2017.04.028.

    Article  Google Scholar 

  54. Kabeel AE, Khairat Dawood MM, Shehata AI. Augmentation of thermal efficiency of the glass evacuated solar tube collector with coaxial heat pipe with different refrigerants and filling ratio. Energy Convers Manag. 2017;138:286–98. https://doi.org/10.1016/j.enconman.2017.01.048.

    Article  CAS  Google Scholar 

  55. Kaya M, Gürel AE, Ağbulut Ü, Ceylan İ, Çelik S, Ergün A, Acar B. Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe. Energy Convers Manag. 2019. https://doi.org/10.1016/j.enconman.2019.111936.

    Article  Google Scholar 

  56. Li, H., Liu, H., Li, M., 2021. Review on heat pipe based solar collectors : classi fi cations , performance evaluation and optimization , and effectiveness improvements

  57. Liu, Y., 2016. Principle, Application and Development of Heat Pipe Technology 723–728. https://doi.org/10.2991/iccte-16.2016.122

  58. Lu L, Liu ZH, Xiao HS. Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors. Part 1: Indoor experiment. Sol Energy. 2011;85:379–87. https://doi.org/10.1016/j.solener.2010.11.008.

    Article  CAS  Google Scholar 

  59. Maghrabie HM, Olabi AG, Alami AH, Al RM, Zwayyed F, Salamah T, Wilberforce T, Abdelkareem MA. Numerical simulation of heat pipes in different applications. Int J Thermofluids. 2022;16:100199. https://doi.org/10.1016/j.ijft.2022.100199.

    Article  Google Scholar 

  60. Mahjoub S, Mahtabroshan A. Numerical simulation of a conventional heat pipe. Int Sch Sci Res Innov. 2008;2:97–102.

    Google Scholar 

  61. Malakar S, Arora VK, Nema PK. Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove. Renew Energy. 2021;168:568–80. https://doi.org/10.1016/j.renene.2020.12.068.

    Article  Google Scholar 

  62. Malan DJ, Dobson RT, Dinter F. Solar thermal energy storage in power generation using phase change material with heat pipes and fins to enhance heat transfer. Energy Procedia. 2015;69:925–36. https://doi.org/10.1016/j.egypro.2015.03.176.

    Article  Google Scholar 

  63. Mathew AA, Thangavel V. A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation. Renew Energy. 2021;179:1674–93. https://doi.org/10.1016/j.renene.2021.07.029.

    Article  Google Scholar 

  64. Moradgholi M, Nowee SM, Abrishamchi I. Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Sol Energy. 2014;107:82–8. https://doi.org/10.1016/j.solener.2014.05.018.

    Article  CAS  Google Scholar 

  65. Mosleh HJ, Mamouri SJ, Shafii MB, Sima AH. A new desalination system using a combination of heat pipe, evacuated tube and parabolic through collector. Energy Convers Manag. 2015;99:141–50. https://doi.org/10.1016/j.enconman.2015.04.028.

    Article  Google Scholar 

  66. Naghavi MS, Ong KS, Badruddin IA, Mehrali M, Silakhori M, Metselaar HSC. Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material. Energy. 2015;91:911–24. https://doi.org/10.1016/j.energy.2015.08.100.

    Article  Google Scholar 

  67. ONOSI Solar, n.d. ONOSI Solar. https://www.onosisolar.com/solar-collectors/

  68. Patel VD. To improve the thermal performance of heat pipe in evacuated tube solar collector. Int J Eng Res Technol ISSN. 2021;9:2020–2.

    Google Scholar 

  69. Pawar VR, Sobhansarbandi S. Design optimization and heat transfer enhancement of energy storage based solar thermal collector. Sustain Energy Technol Assessments. 2021;46:101260. https://doi.org/10.1016/j.seta.2021.101260.

    Article  Google Scholar 

  70. Pawar VR, Sobhansarbandi S. CFD modeling of a thermal energy storage based heat pipe evacuated tube solar collector. J Energy Storage. 2020;30:101528. https://doi.org/10.1016/j.est.2020.101528.

    Article  Google Scholar 

  71. Pereira H, Haug F, Silva P, Wu J, Koettig T. Cryogenic loop heat pipes for the cooling of small particle detectors at cern. AIP Conf Proc. 2010;1218:1039–46. https://doi.org/10.1063/1.3422264.

    Article  CAS  Google Scholar 

  72. Peyghambarzadeh SM, Shahpouri S, Aslanzadeh N, Rahimnejad M. Thermal performance of different working fluids in a dual diameter circular heat pipe. Ain Shams Eng J. 2013;4:855–61. https://doi.org/10.1016/j.asej.2013.03.001.

    Article  Google Scholar 

  73. Pise GA, Salve SS, Pise AT, Pise AA. Investigation of solar heat pipe collector using nanofluid and surfactant. Energy Procedia. 2016;90:481–91. https://doi.org/10.1016/j.egypro.2016.11.215.

    Article  CAS  Google Scholar 

  74. Ramsey JW, Gupta BP, Knowles GR. Experimental evaluation of a cylindrical parabolic solar collector. Am Soc Mech Eng. 1976;99:163–8.

    Google Scholar 

  75. Rassamakin B, Khairnasov S, Zaripov V, Rassamakin A, Alforova O. Aluminum heat pipes applied in solar collectors. Sol Energy. 2013;94:145–54. https://doi.org/10.1016/j.solener.2013.04.031.

    Article  CAS  Google Scholar 

  76. Reay DA, Kew PA, McGlen RJ. Special types of heat pipe. Heat Pipes. 2014. https://doi.org/10.1016/b978-0-08-098266-3.00006-6.

    Article  Google Scholar 

  77. Reay DA, Kew PA, McGlen RJ. Heat pipe components and materials. Heat Pipes. 2014. https://doi.org/10.1016/b978-0-08-098266-3.00003-0.

    Article  Google Scholar 

  78. Ren X, Yu M, Zhao X, Li J, Zheng S, Chen F, Wang Z, Zhou J, Pei G, Ji J. Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model. Energy. 2020;190:116338. https://doi.org/10.1016/j.energy.2019.116338.

    Article  Google Scholar 

  79. Rittidech S, Wannapakne S. Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP). Appl Therm Eng. 2007;27:1978–85. https://doi.org/10.1016/j.applthermaleng.2006.12.005.

    Article  Google Scholar 

  80. Roslan MEBM, Hassim I. Solar PV system with pulsating heat pipe cooling, Indones. J Electr Eng Comput Sci. 2019;14:311–8. https://doi.org/10.11591/ijeecs.v14.i1.pp311-318.

    Article  Google Scholar 

  81. Rybár R, Beer M, Cehlár M. Thermal power measurement of the novel evacuated tube solar collector and conventional solar collector during simultaneous operation. Meas J Int Meas Confed. 2016;88:153–64. https://doi.org/10.1016/j.measurement.2016.03.054.

    Article  Google Scholar 

  82. Sabiha MA, Saidur R, Hassani S, Said Z, Mekhilef S. Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manag. 2015;105:1377–88. https://doi.org/10.1016/j.enconman.2015.09.009.

    Article  CAS  Google Scholar 

  83. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M. Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy. 2019;136:884–95. https://doi.org/10.1016/j.renene.2019.01.035.

    Article  CAS  Google Scholar 

  84. Saravanan M, Karunakaran N. Experimental analysis of heat pipe with V-trough solar collector. Int J Res Advent Technol. 2014;53:12–3.

    Google Scholar 

  85. Sekhar YR, Sharma KV, Karupparaj RT, Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Procedia Eng. 2013;64:1474–84. https://doi.org/10.1016/j.proeng.2013.09.229.

    Article  CAS  Google Scholar 

  86. Senthil R, Madurai Elavarasan R, Pugazhendhi R, Premkumar M, Vengadesan E, Navakrishnan S, Islam MR, Natarajan SK. A holistic review on the integration of heat pipes in solar thermal and photovoltaic systems. Sol Energy. 2021;227:577–605. https://doi.org/10.1016/j.solener.2021.09.036.

    Article  Google Scholar 

  87. Sha M, Mohiabadi MZ. Experimental investigation of heat pipe solar collector using MgO nano fluids. Sol Energy Mater Sol Cells. 2019;191:91–9. https://doi.org/10.1016/j.solmat.2018.10.025.

    Article  CAS  Google Scholar 

  88. Shafieian A, Khiadani M, Nosrati A. Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: a review. Energy Convers Manag. 2019;183:307–31. https://doi.org/10.1016/j.enconman.2018.12.115.

    Article  Google Scholar 

  89. Shafieian A, Khiadani M, Nosrati A. A review of latest developments, progress, and applications of heat pipe solar collectors. Renew Sustain Energy Rev. 2019;95:273–304. https://doi.org/10.1016/j.rser.2018.07.014.

    Article  Google Scholar 

  90. Shafiey Dehaj M, Ahmadi M, Zamani Mohiabadi M. Assessment of a heat pipe solar collector with nanofluids. Environ Sci Pollut Res. 2021;28:5316–31. https://doi.org/10.1007/s11356-020-10797-x.

    Article  CAS  Google Scholar 

  91. Sharma C. A review of heat pipes : its types and applications. Int J Eng Res Technol. 2019;8:103–6.

    Google Scholar 

  92. Shukla KN. Heat pipe for aerospace applications—an overview. J Electron Cool Therm Control. 2015;05:1–14. https://doi.org/10.4236/jectc.2015.51001.

    Article  CAS  Google Scholar 

  93. Somasundaram S, Zhu Y, Lu Z, Adera S, Bin H, Mengyao W, Tan CS, Wang EN. Thermal design optimization of evaporator micropillar wicks. Int J Therm Sci. 2018;134:179–87. https://doi.org/10.1016/j.ijthermalsci.2018.07.036.

    Article  Google Scholar 

  94. Sweidan A, Ghaddar N, Ghali K. Optimized design and operation of heat-pipe photovoltaic thermal system with phase change material for thermal storage. J Renew Sustain Energy. 2016. https://doi.org/10.1063/1.4943091.

    Article  Google Scholar 

  95. Vengadesan E, Senthil R. A review on recent developments in thermal performance enhancement methods of flat plate solar air collector. Renew Sustain Energy Rev. 2020;134:110315. https://doi.org/10.1016/j.rser.2020.110315.

    Article  Google Scholar 

  96. Wallin P (2012) Heat pipe, selection of working fluid. Proj Rep MVK160 Heat Mass Transf 1–7

  97. Wang N, Zeng S, Zhou M, Wang S. Numerical study of flat plate solar collector with novel heat collecting components. Int Commun Heat Mass Transf. 2015;69:18–22. https://doi.org/10.1016/j.icheatmasstransfer.2015.10.012.

    Article  CAS  Google Scholar 

  98. Wei L, Yuan D, Tang D, Wu B. A study on a flat-plate type of solar heat collector with an integrated heat pipe. Sol Energy. 2013;97:19–25. https://doi.org/10.1016/j.solener.2013.07.025.

    Article  Google Scholar 

  99. Wu SY, Zhang QL, Xiao L, Guo FH. A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation. Energy Build. 2011;43:3558–67. https://doi.org/10.1016/j.enbuild.2011.09.017.

    Article  Google Scholar 

  100. Xu RJ, Zhang XH, Wang RX, Xu SH, Wang HS. Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator. Energy Convers Manag. 2017;148:68–77. https://doi.org/10.1016/j.enconman.2017.04.045.

    Article  CAS  Google Scholar 

  101. Xu X, Zhang X, Storage E, Zhang X, Storage E. Finite time thermodynamics analysis and research of pulsating heat pipe cold storage device. Energy Storage Sav. 2022;1:33–43.

    Article  Google Scholar 

  102. Yang L, Ling X, Peng H, Duan LF, Chen X. Starting characteristics of a novel high temperature flat heat pipe receiver in solar power tower plant based of“Flat-front”Startup model. Energy. 2019;183:936–45. https://doi.org/10.1016/j.energy.2019.07.007.

    Article  Google Scholar 

  103. Yu M, Chen F, Zheng S, Zhou J, Zhao X, Wang Z, Li G, Li J, Fan Y, Ji J, Diallo TMO, Hardy D. Experimental investigation of a novel solar micro-channel loop-heat-pipe photovoltaic/thermal (MC-LHP-PV/T) system for heat and power generation. Appl Energy. 2019. https://doi.org/10.1016/j.apenergy.2019.113929.

    Article  Google Scholar 

  104. Zhang D, Tao H, Wang M, Sun Z, Jiang C. Numerical simulation investigation on thermal performance of heat pipe flat-plate solar collector. Appl Therm Eng. 2017;118:113–26. https://doi.org/10.1016/j.applthermaleng.2017.02.089.

    Article  CAS  Google Scholar 

  105. Zhang J, Zhai H, Wu Z, Wang Y, Xie H, Zhang M. Enhanced performance of photovoltaic–thermoelectric coupling devices with thermal interface materials. Energy Rep. 2020;6:116–22. https://doi.org/10.1016/j.egyr.2019.12.001.

    Article  Google Scholar 

  106. Zhang T, Yan Z, Pei G, Zhu Q, Ji J. Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system. Renew Energy. 2019;143:233–42. https://doi.org/10.1016/j.renene.2019.05.014.

    Article  Google Scholar 

  107. Zhang X, You S, Ge H, Gao Y, Xu W, Wang M, He T, Zheng X. Thermal performance of direct-flow coaxial evacuated-tube solar collectors with and without a heat shield. Energy Convers Manag. 2014;84:80–7. https://doi.org/10.1016/j.enconman.2014.04.014.

    Article  Google Scholar 

  108. Zhang X, Zhao X, Xu J, Yu X. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl Energy. 2013;102:1229–45. https://doi.org/10.1016/j.apenergy.2012.06.039.

    Article  Google Scholar 

  109. Zhong G, Tang Y, Ding X, Rao L, Chen G, Tang K, Yuan W, Li Z. Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions. Renew Energy. 2020;149:1032–9. https://doi.org/10.1016/j.renene.2019.10.093.

    Article  Google Scholar 

  110. Zhu T, Diao Y, Zhao Y, Ma C. Performance evaluation of a novel flat-plate solar air collector with micro-heat pipe arrays (MHPA). Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.02.076.

    Article  Google Scholar 

  111. Zhu TT, Diao YH, Zhao YH, Deng YC. Experimental study on the thermal performance and pressure drop of a solar air collector based on flat micro-heat pipe arrays. Energy Convers Manag. 2015;94:447–57. https://doi.org/10.1016/j.enconman.2015.01.052.

    Article  Google Scholar 

  112. Zohuri B (2020) Heat pipe infrastructure, functionality, advancements and industrial applications of heat pipes. https://doi.org/10.1016/b978-0-12-819819-3.00001-8

  113. Zohuri B. Heat pipe design and technology: modern applications for practical thermal management. 2nd ed. London: Springer; 2016.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasinta Poonam Ekka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekka, J.P., Dewangan, D. A comprehensive review on recent developments, applications and future aspects of heat pipe-assisted solar collectors. J Therm Anal Calorim 148, 11173–11201 (2023). https://doi.org/10.1007/s10973-023-12396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12396-7

Keywords

Navigation