Skip to main content
Log in

TG-MS study on the activity of Fe, Co, Ni, Cu, and Zn nanometal catalysts on thermal decomposition of ammonium perchlorate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Five nanometal catalysts of Fe, Co, Ni, Cu and Zn were prepared by single displacement reaction and evaluated their catalytic activity towards thermal decomposition of ammonium perchlorate (AP) with respect to lowering of decomposition temperature, boosting of heat energy release and larger evolution of oxidizing decomposition products. The peak temperature of high temperature decomposition was decreased by 93, 55, 47, 15 and 13 °C by adding 0.5% each of Zn, Cu, Ni, Co and Fe respectively. The highest heat energy of 1910 J g−1 was obtained for 0.5% Cu. The evolved gases analysis using thermogravimetry-mass spectrometry revealed new inputs to the catalysed decomposition of AP, especially with respect to chlorine gas evolution. Among the five catalysts studied, copper nanometal powder emerged as the most promising catalyst for thermal decomposition of AP, which can improve the burn rate of the propellant enormously with reduced mass penalties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Jacob PWM, Whitehead HM. Decomposition and combustion of ammonium perchlorate. Chem Rev. 1969;69:551–90.

    Google Scholar 

  2. Wang Y, Zhu J, Yang X, Lu L, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2005;437:106–9.

    CAS  Google Scholar 

  3. Yan Q, Zhao F, Kuo KK, Zhang X, Zeman S, DeLuca LT. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci. 2016;57:75–62.

    Google Scholar 

  4. Bekhouche S, Trache D, Abdelaziz A, Tarchoun AF, Boukeciat H. Effect of fluorine-containing thermite coated with potassium perchlorate on the thermal decomposition behavior and kinetics of ammonium perchlorate. Thermochim Acta. 2022. https://doi.org/10.1016/j.tca.2022.179413.

    Article  Google Scholar 

  5. Zhang J, Jin B, Hao W, Song Y, Hou C, Huang T, Peng R. Catalytic thermal decomposition of ammonium perchlorate by a series of lanthanide EMOFs. J Rare Earths. 2023;41:516–7.

    CAS  Google Scholar 

  6. Dave PN, Sirach R. NiZnFe2O4: a potential catalyst for the thermal decomposition of AP and burn rate modifier for AP/HTPB based propellants. J Therm Anal Calorim. 2022;147:10999–1012.

    CAS  Google Scholar 

  7. Chalghoum F, Trache D, Benziane M, Benhammada A. Effect of micro- and nano-CuO on the thermal decomposition kinetics of high-performance aluminized composite solid propellants containing complex metal hydrides. FirePhysChem. 2022;2:36–14.

    Google Scholar 

  8. Cui P, Wang A. Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2016;20:343–8.

    CAS  Google Scholar 

  9. Benhammada A, Trache D, Chelouche S, Mezroua A. catalytic effect of green CuO nanoparticles on the thermal decomposition kinetics of ammonium perchlorate. Z fur Anorg Allg Chem. 2021;647:312–4.

    CAS  Google Scholar 

  10. Yang J, Zhang W, Liu Q, Sun W. Porous ZnO and ZnO–NiO composite nano/microspheres: synthesis, catalytic and biosensor properties. RSC Adv. 2014;4:51098–104.

    CAS  Google Scholar 

  11. Paulose S, Raghavan R, George BK. Graphite oxide–iron oxide nanocomposites as a new class of catalyst for the thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6:45977–85.

    CAS  Google Scholar 

  12. Chen L, Zhu D. The particle dimension controlling synthesis of α-MnO2 nanowires with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;27:69–72.

    CAS  Google Scholar 

  13. Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17:135–49.

    CAS  Google Scholar 

  14. Duan H, Lin X, Liu G, Xu L, Li F. Synthesis of Ni nanoparticles and their catalytic effect on the decomposition of ammonium perchlorate. J Mater Process Technol. 2008;208:494–8.

    CAS  Google Scholar 

  15. Liu L, Li F, Tan L, Ming L, Yi Y. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellants, Explos Pyrotech. 2004;29:34–8.

    Google Scholar 

  16. Lan Y, Jin B, Deng J, Luo Y. Graphene/nickel aerogel: an effective catalyst for the thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6:82112–7.

    CAS  Google Scholar 

  17. Huang C, Liu Q, Fan W, Qiu X. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate. Sci Rep. 2015. https://doi.org/10.1038/srep16736.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rios PL, Povea P, Cerda-Cavieres C, Arroyo JL, Morales-Verdejo C, Abarca G, Camarada MB. Novel in situ synthesis of copper nanoparticles supported on reduced graphene oxide and its application as a new catalyst for the decomposition of composite solid propellants. RSC Adv. 2019;9:8480–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kechit H, Belkhiri S, Bhakta AK, Trache D, Mekhalif Z, Tarchoun AF. The effect of iron decorated MWCNTs and iron-ionic liquid decorated MWCNTs onto thermal decomposition of ammonium perchlorate. Z fur Anorg Allg Chem. 2021;647:1607–13.

    CAS  Google Scholar 

  20. Peiris SM, Pangilinan GI, Russell TP. Structural properties of ammonium perchlorate compressed to 5.6 GPa. J Phys Chem A. 2000;104:11188–6.

    CAS  Google Scholar 

  21. Xiao X, Peng B, Cai L, Zhang X, Liu S, Wang Y. The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-26022-2.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kadhem S, Humud H, Abdulmajeed IM. Copper nanoparticles prepared by pulsed exploding wire. Iraqi J Phys. 2015;13:128–38.

    Google Scholar 

  23. Sreeju N, Rufus A, Philip D. Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J Mol Liq. 2016;221:1008–21.

    CAS  Google Scholar 

  24. Zhu H, Zhang C, Yin Y. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth. 2004;270:722–8.

    CAS  Google Scholar 

  25. Giuffrida S, Condorelli GG, Costanzo LL, Fragala IL, Ventimiglia G, Vecchio G. Photochemical mechanism of the formation of nanometer-sized copper by UV irradiation of ethanol bis(2,4-pentandionato)copper(II) solutions. Chem Mater. 2004;16:1260–6.

    CAS  Google Scholar 

  26. Arul DN, Paul RC, Gedanken A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater. 1998;10:1446–52.

    Google Scholar 

  27. Chakrapani V, Ahmed KBA, Kumar VV, Ganapathy V, Anthony SP, Anbazhagan V. A facile route to synthesize casein capped copper nanoparticles: an effective antibacterial agent and selective colorimetric sensor for mercury and tryptophan. RSC Adv. 2014;4:33215–21.

    CAS  Google Scholar 

  28. Nikhil VS, Thakare SR, Khaty NT. One pot synthesis of copper nanoparticles at room temperature and its catalytic activity. Arab J Chem. 2016;9:S1807–12.

    Google Scholar 

  29. Cerda JS, Gomez HE, A-Nunez G, Rivero IA, Ponce YG, Lopez LZF. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc. 2017;21:341–8.

    Google Scholar 

  30. Ong HR, Khan MR, Ramli R, Yunus RM. Synthesis of copper nanoparticles at room temperature using hydrazine in glycerol. Appl Mech Mater. 2014;481:21–6.

    CAS  Google Scholar 

  31. Nickel U, Castell A, Poppl K, Schneider S. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced raman spectroscopy. Langmuir. 2000;16:9087–91.

    CAS  Google Scholar 

  32. Lisiecki I, Billoudet F, Pileni MP. Control of the shape and the size of copper metallic particles. J Phys Chem. 1996;100:4160–6.

    CAS  Google Scholar 

  33. Wu SH, Chen DH. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci. 2004;273:165–9.

    CAS  PubMed  Google Scholar 

  34. Tang XF, Yang ZG, Wang WJ. A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids Surf A: Physicochem Eng Asp. 2010;360:99–104.

    CAS  Google Scholar 

  35. Rice KP, Walker EJ, Stoykovich MP, Saunders AE. Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J Phys Chem C. 2011;115:1793–9.

    CAS  Google Scholar 

  36. ASTM Standard test method for decomposition kinetics by thermogravimetry using the Ozawa/Flynn/Wall method, designation: E1641–16.

  37. Fynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Standards Part A. 1966;70A(5):487–523.

    Google Scholar 

  38. Vyazovkin S, Burnham AK, Criado JM, Pe´rez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  39. Hirano Y, Kasai Y, Sagata K, Kita Y. Unique approach for transforming glucose to c3 platform chemicals using metallic iron and a Pd/C catalyst in water. Bull Chem Soc Jpn. 2016;89:1026–33.

    CAS  Google Scholar 

  40. Li CC, Zeng HC. Cobalt (hcp) nanofibers with pine-tree-leaf hierarchical superstructures. J Mater Chem. 2010;20:9187–92.

    CAS  Google Scholar 

  41. Wu X, Xing W, Zhang L, Zhuo S, Zhou J, Wang G, Qiao S. Nickel nanoparticles prepared by hydrazine hydrate reduction and their application in supercapacitor. Powder Technol. 2012;224:162–7.

    CAS  Google Scholar 

  42. Andal V, Buvaneswari G. Effect of reducing agents in the conversion of Cu2O nanocolloid to Cu nanocolloid. Eng Sci Technol Int J. 2017;20:340–4.

    Google Scholar 

  43. Huang C, Long Z, Miyauchi M, Qiu X. A facile one-pot synthesis of Cu–Cu2O concave cube hybrid architectures. Cryst Eng Comm. 2014;16:4967–72.

    CAS  Google Scholar 

  44. Mai NT, Thuy TT, Mott DM, Maenosono S. Chemical synthesis of blue-emitting metallic zinc nano-hexagons. Cryst Eng Comm. 2013;15:6606–10.

    CAS  Google Scholar 

  45. Billeh BM, Naciri AE, Moadhen A, Rinnert H, Guendouz M, Battie Y, Chaillou A, Zaibi MA, Oueslati M. Effects of silicon porosity on physical properties of ZnO films. Mater Chem Phys. 2016;175:233–40.

    Google Scholar 

  46. Usman MS, Ibrahim NA, Shameli K, Zainuddin N, Yunus WMZW. Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods. Molecules. 2012;17:14928–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Herve R, Li N, Geng Z, Cao M, Ren L, Zhao X, Liu B, Tian Y, Hu C. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon. 2013;54:124–32.

    Google Scholar 

  48. Bircomshaw LL, Newman BH. Thermal decomposition of ammonium perchlorate. II. The kinetics of the decomposition, the effect of particle size and discussion of results. Proc Roy Soc A. 1955;227:228–41.

    Google Scholar 

  49. Boldyrev VV. Thermal decomposition of Ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    CAS  Google Scholar 

  50. Jacobs PWM, Russell-Jones. On the mechanism of the decomposition of ammonium Perchlorate. AIAA J. 1967;5:829–30.

    CAS  Google Scholar 

  51. Wang J, Zhang W, Zheng Z, Gao Y, Ma K, Ye J, Yang Y. Enhanced thermal decomposition properties of ammonium perchlorate through addition of 3DOM core-shell Fe2O3/Co3O4 composite. J Alloys Compds. 2017;724:720–7.

    CAS  Google Scholar 

  52. Wang T, Xu B, Wang Y, Lei J, Qin W, Gui K, Ouyang C, Chen K, Wang H. In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices. Chin Chem Lett. 2022;33:2669–77.

    CAS  Google Scholar 

  53. Solymosi F, Rasko J. Thermal decomposition and ignition of ammonium perchlorate in the presence of zinc perchlorate. Z Phys Chem. 1969;67:76–85.

    CAS  Google Scholar 

  54. Vyazovkin S, Wight CA. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater. 1999;11:3386–8.

    CAS  Google Scholar 

  55. Domínguez O. Thermal decomposition of ammonium perchlorate/exfoliated-graphene and the relationship between activation energy and band gap. J Energ Mater. 2019. https://doi.org/10.1080/07370652.2019.1601793.

    Article  Google Scholar 

  56. Juibari NM, Eslami A. Synthesis of nickel oxide nanorods by Aloe vera leaf extract: Study of itselectrochemical properties and catalytic effect on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2019;136:913–23.

    Google Scholar 

  57. Garn PD. Temperature coefficient of reaction. Thermochim Acta. 1979;28:185–93.

    CAS  Google Scholar 

  58. Ninan KN. A thermogravimetric study on the catalytic thermal decomposition of ammonium perchlorate from activation energy normalized through kinetic compensation. Indian J Chem. 1998;37A:295–8.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director, VSSC, Deputy Director VSSC (PCM) and colleagues in Analytical and Spectroscopy Division, VSSC for their support.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, supervision and reviewing of the manuscript RR, Material preparation and data collection PC and SB, Data interpretation and manuscript preparation PC, Analysis DT, JT, VSN and PC.

Corresponding author

Correspondence to Parvathy Chandrababu.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrababu, P., Beena, S., Thomas, D. et al. TG-MS study on the activity of Fe, Co, Ni, Cu, and Zn nanometal catalysts on thermal decomposition of ammonium perchlorate. J Therm Anal Calorim 148, 10065–10079 (2023). https://doi.org/10.1007/s10973-023-12386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12386-9

Keywords

Navigation