Skip to main content
Log in

Performance augmentation of retrofitted sustainable R1234yf in R134a air conditioning system using Al2O3–SiO2 hybrid nanolubricant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low global warming potential hydrofluoroolefin-1234yf (R1234yf) is an alternative green refrigerant for the automotive air conditioning (AAC) system to replace the existing R134a refrigerant. However, the low energy efficiency of the AAC system using R1234yf has been a significant obstacle to its wider use. This paper describes using Al2O3–SiO2/DEC PAG nanolubricant to enhance the performance of the AAC-R1234yf system. The hybrid nanolubricant was created by a two-step preparation process. The experiment was undertaken at volume concentrations up to 0.05% and under various operating conditions. The stability test shows that the hybrid nanolubricant remained in superior stability after 6 months, with minimum particle aggregation and sedimentation. The AAC-Al2O3–SiO2/DEC PAG system achieved the best performance at 0.03% volume concentration with an average increment of 12.01%. This outcome was contributed by the increase of the AAC evaporator’s heat absorb value by 2.8% and the reduction of the compressor work with an average decrease of 7.7%. In conclusion, a 0.03% volume concentration of Al2O3–SiO2/DEC PAG nanolubricant in the AAC compressor was recommended for optimum system performance and energy saving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AAC:

Automotive air conditioning

AAC-Al2O3–SiO2/DEC PAG:

AAC-R1234yf system with Al2O3–SiO2/DEC PAG hybrid nanolubricants

AAC-DEC PAG:

AAC-R1234yf system with DEC PAG lubricants

AAC-R1234yf:

AAC system with R1234yf refrigerant

AAC-R134a:

AAC system with R134a refrigerant

ASHRAE:

American society of heating, refrigerating and air conditioning engineers

COP:

Coefficient of performance

Cp:

Specific heat capacity (J kg1 K1) for water at 30 °C

DEC:

Double-end-capped

TEM:

Transmission electron microscopes

GWP:

Global warming potential

IHX:

Internal heat exchanger

kW:

Kilowatt

m :

Mass (g)

\(\dot{m}_{{\text{w}}}\) :

Water mass flow rate (L min1)

\(\dot{m}_{{\text{r}}}\) :

Refrigerant mass flow rate (kg s1)

m RC :

Initial refrigerant charge (g)

n :

Number of population

PAG:

Polyalkylene glycol

\({q}_{\mathrm{L}}\) :

Heat Absorb (kJ kg1)

\(\dot{{q}_{\mathrm{L}}}\) :

Cooling capacity (kW) at refrigerant side

\({\dot{q}}_{\mathrm{w}}\) :

Cooling capacity of (kW) from the calorimetric bath calculation

R.H.:

Relative humidity

rpm:

Revolution per minute

RSE:

Relative standard error (%)

S err :

Standard error

SAE:

Society of Automotive Engineers

T :

Temperature (K)

t:

Time (s)

T in :

Average temperature for water inlet

T out :

Average temperature for water outlet

TXV:

Thermostatic expansion valve

VCS:

Vapour compression system

\(W_{{{\text{in}}}}\) :

Compressor work (kJ kg1)

\(\dot{W}_{{{\text{in}}}}\) :

Power consumption (kW)

WDEC:

Without double-end-capped

ϕ :

Volume concentration (%)

ρ :

Density (kg m3)

\(\sigma\) :

Standard deviation for sample

L :

Lubricant

P :

Nanoparticle

References

  1. Calm JM. The next generation of refrigerants—historical review, considerations, and outlook. Int J Refrig. 2008;31(7):1123–33.

    Article  CAS  Google Scholar 

  2. Uddin K, Saha BB, Thu K, Koyama S. Low GWP refrigerants for energy conservation and environmental sustainability. In: Advances in solar energy research. Springer; 2019. p. 485–517.

    Chapter  Google Scholar 

  3. Brooks TM, Lamoreux JF, Soberón J. IPCC 5th report. Trends Ecol Evol. 2014;29(10):543–5.

    Article  PubMed  Google Scholar 

  4. Wang C-C. System performance of R-1234yf refrigerant in air-conditioning and heat pump system—an overview of current status. Appl Therm Eng. 2014;73(2):1412–20.

    Article  CAS  Google Scholar 

  5. Li G, Eisele M, Lee H, Hwang Y, Radermacher R. Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants. Energy. 2014;68:819–31.

    Article  CAS  Google Scholar 

  6. Aprea C, Maiorino A. An experimental evaluation of the transcritical CO2 refrigerator performances using an internal heat exchanger. Int J Refrig. 2008;31(6):1006–11.

    Article  CAS  Google Scholar 

  7. Navarro-Esbrí J, Cabello R, Torrella E. Experimental evaluation of the internal heat exchanger influence on a vapour compression plant energy efficiency working with R22, R134a and R407C. Energy. 2005;30(5):621–36.

    Article  Google Scholar 

  8. Zhang FZ, Jiang PX, Lin YS, Zhang YW. Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger. Appl Therm Eng. 2011;31(4):432–8.

    Article  Google Scholar 

  9. Sánchez D, Patiño J, Llopis R, Cabello R, Torrella E, Fuentes FV. New positions for an internal heat exchanger in a CO2 supercritical refrigeration plant. Experimental analysis and energetic evaluation. Appl Therm Eng. 2014;63(1):129–39.

    Article  Google Scholar 

  10. Zhang Z-Y, Ma Y-T, Wang H-L, Li M-X. Theoretical evaluation on effect of internal heat exchanger in ejector expansion transcritical CO2 refrigeration cycle. Appl Therm Eng. 2013;50(1):932–8.

    Article  CAS  Google Scholar 

  11. Sumeru K, Nasution H, Ani FN. A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle. Renew Sustain Energy Rev. 2012;16(7):4927–37.

    Article  CAS  Google Scholar 

  12. Besagni G, Mereu R, Inzoli F. Ejector refrigeration: a comprehensive review. Renew Sustain Energy Rev. 2016;53:373–407.

    Article  Google Scholar 

  13. Chen J, Jarall S, Havtun H, Palm B. A review on versatile ejector applications in refrigeration systems. Renew Sustain Energy Rev. 2015;49:67–90.

    Article  Google Scholar 

  14. Elbel S, Lawrence N. Review of recent developments in advanced ejector technology. Int J Refrig. 2016;62:1–18.

    Article  Google Scholar 

  15. Sarkar J. Ejector enhanced vapor compression refrigeration and heat pump systems—a review. Renew Sustain Energy Rev. 2012;16(9):6647–59.

    Article  Google Scholar 

  16. Afshari F, Sahin B, Khanlari A, Manay E. Experimental optimization and investigation of compressor cooling fan in an air-to-water heat pump. Heat Trans Res. 2020;51(4):319–31.

    Article  Google Scholar 

  17. Afshari F, Sözen A, Khanlari A, Tuncer AD, Ali HM. Experimental investigation of effect of refrigerant gases, compressor lubricant and operating conditions on performance of a heat pump. J Cent South Univ. 2021;28(11):3556–68.

    Article  CAS  Google Scholar 

  18. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R, Samykano M, Najafi G. Performance improvement in mobile air conditioning system using Al2O3/PAG nanolubricant. J Therm Anal Calorim. 2019;135(2):1299–310.

    Article  CAS  Google Scholar 

  19. Sharif MZ, Azmi WH, Redhwan AAM, Mamat R, Najafi G. Energy saving in automotive air conditioning system performance using SiO2/PAG nanolubricants. J Therm Anal Calorim. 2019;135(2):1285–97.

    Article  CAS  Google Scholar 

  20. Zawawi NNM, Azmi WH, Ghazali MF. Performance of Al2O3–SiO2/PAG composite nanolubricants in automotive air-conditioning system. Appl Therm Eng. 2022;204:117998.

    Article  CAS  Google Scholar 

  21. Sharif MZ, Azmi WH, Ghazali MF, Zawawi NNM, Ali HM. Viscosity and friction reduction of double-end-capped polyalkylene glycol nanolubricants for eco-friendly refrigerant. Lubricants. 2023;11(3):129.

    Article  CAS  Google Scholar 

  22. Yusri IM, Mamat R, Najafi G, Razman A, Awad OI, Azmi WH, et al. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions. Renew Sustain Energy Rev. 2017;77:169–81.

    Article  CAS  Google Scholar 

  23. ASHRAE. Standard 41.9–2000—calorimeter test methods for mass flow measurements of volatile refrigerants. 2000.

  24. Sharif MZ, Azmi WH, Ghazali MF, Zawawi NNM, Hendrawati TY. Stability and thermal conductivity of mono and hybrid nanoparticles dispersion in double-end-capped PAG lubricant. Lubricants. 2023;11(1):1.

    Article  CAS  Google Scholar 

  25. Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1.

    Google Scholar 

  26. Witharana S, Palabiyik I, Musina Z, Ding Y. Stability of glycol nanofluids—the theory and experiment. Powder Technol. 2013;239:72–7.

    Article  CAS  Google Scholar 

  27. Zawawi NNM, Azmi WH, Sharif MZ, Najafi G. Experimental investigation on stability and thermo-physical properties of Al2O3–SiO2/PAG nanolubricants with different nanoparticle ratios. J Therm Anal Calorim. 2019;135(2):1243–55.

    Article  CAS  Google Scholar 

  28. Cho H, Lee H, Park C. Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf. Appl Therm Eng. 2013;61(2):563–9.

    Article  CAS  Google Scholar 

  29. Qi Z. Performance improvement potentials of R1234yf mobile air conditioning system. Int J Refrig. 2015;58:35–40.

    Article  CAS  Google Scholar 

  30. Hamisa AH, Azmi WH, Ismail MF, Rahim RA, Ali HM. Tribology performance of polyol-ester based TiO2, SiO2, and their hybrid nanolubricants. Lubricants. 2023;11(1):1–21.

    Article  Google Scholar 

  31. Xing M, Wang R, Yu J. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors. Int J Refrig. 2014;40:398–403.

    Article  CAS  Google Scholar 

  32. Adelekan DS, Ohunakin OS, Babarinde TO, Odunfa MK, Leramo RO, Oyedepo SO, et al. Experimental performance of LPG refrigerant charges with varied concentration of TiO2 nano-lubricants in a domestic refrigerator. Case Stud Therm Eng. 2017;9:55–61.

    Article  Google Scholar 

  33. Adelekan DS, Ohunakin OS, Gill J, Atayero AA, Diarra CD, Asuzu EA. Experimental performance of a safe charge of LPG refrigerant enhanced with varying concentrations of TiO2 nano-lubricant in a domestic refrigerator. J Therm Anal Calorim. 2019;136(6):2439–48.

    Article  CAS  Google Scholar 

  34. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Samykano M. Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants. Int J Refrig. 2018;89:11–21.

    Article  CAS  Google Scholar 

  35. Krishna Sabareesh R, Gobinath N, Sajith V, Das S, Sobhan CB. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems—an experimental investigation. Int J Refrig. 2012;35(7):1989–96.

    Article  CAS  Google Scholar 

  36. Aldrich S. Aluminum Oxide (13 nm) Data Sheet Produced by Sigma Aldrich. Available online: https://www.sigmaaldrich.com/MY/en/product/aldrich/718475. Accessed 15 Dec 2022

  37. Zakaria I, Azmi WH, Mohamed WANW, Mamat R, Najafi G. Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application. Int Commun Heat Mass Transfer. 2015;61:61–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Universiti Malaysia Pahang (www.ump.edu.my) for the financial support given under RDU213302. The authors would like to also thank the research teams from the Centre for Research in Advanced Fluid and Processes (Pusat Bendalir), Advanced Automotive Liquids Laboratory (AALL) and Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), who have provided professional insights and expertise that greatly assisted the present research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. H. Azmi or Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M.Z., Azmi, W.H., Ghazali, M.F. et al. Performance augmentation of retrofitted sustainable R1234yf in R134a air conditioning system using Al2O3–SiO2 hybrid nanolubricant. J Therm Anal Calorim 148, 10203–10215 (2023). https://doi.org/10.1007/s10973-023-12385-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12385-w

Keywords

Navigation