Skip to main content
Log in

Darcy–Brinkman analysis of thermo-vibrational convection in gyrotactic swimmers: an overstability theory

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper investigates Darcy–Brinkman thermal convection in the stratified porous saturated suspension of active particles subjected to vertical oscillation. For a heated layer, in the context of no-slip boundaries, the derived critical numbers are found to be real-valued, which signifies that the mechanism of convection is through the stationary mode, although for a certain range of heat parameters, oscillatory convection is inevitable. The dispersion expressions are developed to characterize the stationary and overstability thresholds of the system using the Galerkin method. An attempt has been made to analyze and substantiate the significance of important parameters such as modified Darcy number \((D_\textrm{a})\), wave number \((\alpha ^{\jmath })\), and Rayleigh numbers [bioconvection \((R_\textrm{b})\), thermal \((R_\textrm{a})\), and their vibrational analogs \((R_\textrm{v}, R_\textrm{t})\) ] for the representative ranges of Péclet \((1\le \hbox {Pe} \le 2)\) and gyrotactic \((1\le G\le 5)\) numbers. While incremental gyrotactic propulsion encourages the decrease in bioconvection strength, higher Péclet values induce the suspension to stabilize. Porosity has a destabilizing effect that considerably lessens the ability of vertical vibration to stabilize. The layer becomes unstable due to the thermal-oscillational connection of the thermal vibration parameter, which slows the development of bioconvection blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Semi-major axis of spheroidal cell

b :

Semi-minor axis of spheroidal cell

\(\hat{b}\) :

Vibration amplitude (s)

B :

Parameter of swimmers orientation

\(c_\textrm{a}\) :

Acceleration coefficient

\(c_\textrm{p}\) :

Specific heat \( ({\text{J}}\;{\text{kg}}^{{ - 1}} \;{\text{K}}^{{ - 1}} ) \)

\(D_\textrm{c}\) :

Diffusivity of cell \( ({\text{m}}^{2} \;{\text{s}}^{{ - 1}} ) \)

g :

Gravity

\({\textbf {g}}\) :

Gravity vector \( ({\text{m}}\;{\text{s}}^{{ - 2}} ) \)

h :

Displacement of the center of mass of cell from its centre of buoyancy

\({\textbf {k}}\) :

Vertically upward unit vector

\(\overline{n}\) :

Number density of cells \( ({\text{mol}}\;{\text{m}}^{{ - 3}} ) \)

\(n _\textrm{av}\) :

Cells mean concentration

\(\overline{p}\) :

Average pressure \( ({\text{kg}}\;{\text{m}}^{{ - 1}} \;{\text{s}}^{{ - 2}} ) \)

\(\hat{{\textbf {p}}}\) :

Unit vector indicating the average direction of swimming

\(q_\textrm{c}\) :

Average up-swimming velocity of cells

t :

Time (s)

\(\overline{T}\) :

Mean temperature (K)

\(T_{0}\) :

Temperature at top wall

\(T_{0}+\Delta T\) :

Temperature at lower wall

\(\overline{{\textbf {v}}}\) :

Mean fluid velocity \( ({\text{m}}\;{\text{s}}^{{ - 1}} ) \)

\(\Bbbk \) :

Permeability \((m^{2})\)

l :

Depth of the layer (m)

\(\alpha ^{\jmath }\) :

Dimensionless wave number

\(\mho \) :

Density measure of micro-swimmers

\(\hbox {Da} = \Bbbk / l^{2}\) :

Darcy number

\(D_\textrm{a} = \Bbbk \mu /l^{2}\tilde{\mu }\) :

Modified Darcy number

G :

Gyrotaxis number

Le:

Lewis number

Pe:

Bioconvection Péclet number

Pr:

Prandtl number

\(R_\textrm{a} = \rho _\textrm{f}^{2}c_\textrm{p}g\beta \Delta {T}\Bbbk l/\mu \kappa \) :

Thermal Rayleigh–Darcy number

\(R_\textrm{b} = \Bbbk q_\textrm{c}g\nu \theta \Delta \rho l^2/\mu D_\textrm{c}^{2}\) :

Bioconvection Rayleigh–Darcy number

\(R_\textrm{t} = \rho _\textrm{f} \Bbbk \theta \beta \nu q_\textrm{c}l\Delta {T}(\hat{b}\omega )^{2}/ 2\mu D_\textrm{c}^{2}\) :

Thermo-vibrational Darcy parameter

\(R_{\upsilon } = \Bbbk \rho _\textrm{f}{[}\theta \hat{b}\omega \nu q_\textrm{c} l(\Delta \rho /\rho _\textrm{f}){]} {}^{2}/2\mu D_\textrm{c}^{3}\) :

Vibrational Rayleigh–Darcy number

\(\alpha \) :

Wave number \( ({\text{m}}^{{ - 1}} ) \)

\(\alpha _{0}\) :

Cell eccentricity measurement

\(\alpha _{\bot }\) :

Dimensionless constant relating viscous torque to the relative swimmers angular velocity

\(\beta \) :

Measure of thermal expansion \( ({\text{K}}^{{ - 1}} ) \)

\(\theta \) :

Average volume of cell \( ({\text{m}}^{3} ) \)

\(\mu \) :

Viscosity (dynamic) \( ({\text{kg}}\;{\text{m}}^{{ - 1}} \;{\text{s}}^{{ - 1}} ) \)

\(\nu \) :

Fundamental number density at bottom surface

\(\rho _\textrm{c}\) :

Density of cell \( ({\text{kg}}\;{\text{m}}^{{ - 3}} ) \)

\(\rho _\textrm{f}\) :

Density of fluid \( ({\text{kg}}\;{\text{m}}^{{ - 3}} ) \)

\(\Delta \rho \) :

Difference in density \((\rho _\textrm{c} - \rho _\textrm{f})\) \( ({\text{kg}}\;{\text{m}}^{{ - 3}} ) \)

\(\omega \) :

Vibration angular frequency \( ({\text{s}}^{{ - 1}} ) \)

\(\phi \) :

Porosity of the medium

\(\sigma \) :

Growth rate

\(\kappa \) :

Temperature conductivity \( ({\text{W}}\;{\text{m}}^{{ - 1}} \;{\text{K}}^{{ - 1}} ) \)

\(\tilde{\mu }\) :

Effective viscosity \( ({\text{kg}}\;{\text{m}}^{{ - 1}} \;{\text{s}}^{{ - 1}} ) \)

\(\circledast \) :

Perturbed quantity

−:

Mean component

\(\jmath \) :

Dimensionless quantity

av:

Average condition

c:

Cell

cr:

Critical condition

b:

Basic state

References

  1. Childress S, Levandowsky M, Spiegel EA. Pattern formation in a suspension of swimming micro-organisms: equations and stability theory. J Fluid Mech. 1975;69:591–613. https://doi.org/10.1017/S0022112075001577.

    Article  Google Scholar 

  2. Pedley TJ, Hill NA, Kessler JO. The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganisms. J Fluid Mech. 1988;195:223–37. https://doi.org/10.1017/S0022112088002393.

    Article  CAS  PubMed  Google Scholar 

  3. Bees MA, Hill NA. Linear bioconvection in a suspension of randomly swimming, gyrotactic micro-organisms. Phys Fluids. 1998;10:1864–81. https://doi.org/10.1063/1.869704.

    Article  CAS  Google Scholar 

  4. Ishikawa T, Pedley TJ. Diffusion of swimming model micro-organisms in a semi-dilute suspension. J Fluid Mech. 2007;588:437–62. https://doi.org/10.1017/S0022112007007847.

    Article  Google Scholar 

  5. Ghorai S, Singh R. Linear stability analysis of gyrotactic plumes. Phys Fluids. 2009;21: 081901. https://doi.org/10.1063/1.3206730.

    Article  CAS  Google Scholar 

  6. Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G. Active particles in complex and crowded environments. Rev Mod Phys. 2016;88: 045006. https://doi.org/10.1103/RevModPhys.88.045006.

    Article  Google Scholar 

  7. Sampath Kumar PB, Gireesha BJ, Mahanthesh B, et al. Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bioconvection and second-order slip with convective condition. J Therm Anal Calorim. 2019;136:1947–57. https://doi.org/10.1007/s10973-018-7860-0.

    Article  CAS  Google Scholar 

  8. Sudhagar P, Kameswaran PK, Kumar BR. Gyrotactic microorganism effects on mixed convective nanofluid flow past a vertical cylinder. ASME J Thermal Sci Eng Appl. 2019;11: 041018. https://doi.org/10.1115/1.4044185.

    Article  CAS  Google Scholar 

  9. Marchioli C, Bhatia H, Sardina G, Brandt L, Soldati A. Role of large-scale advection and small-scale turbulence on vertical migration of gyrotactic swimmers. Phys Rev Fluids. 2019;4: 124304. https://doi.org/10.1103/PhysRevFluids.4.124304.

    Article  Google Scholar 

  10. Bees MA. Advances in bioconvection. Annu Rev Fluid Mech. 2020;52:449–76. https://doi.org/10.1146/annurev-fluid-010518-040558.

    Article  Google Scholar 

  11. Khayyat LI, Abdullah AA. The onset of Marangoni bio-thermal convection in a layer of fluid containing gyrotactic microorganisms. AIMS Math. 2021;6:13552–65. https://doi.org/10.3934/math.2021787.

    Article  Google Scholar 

  12. Waqas H, Oreijah M, Guedri K, Khan SU, Yang S, Yasmin S, Khan MI, Bafakeeh OT, Tag-ElDin ESM, Galal AM. Gyrotactic motile microorganisms impact on pseudoplastic nanofluid flow over a moving riga surface with exponential heat flux. Crystals. 2022;12:1308. https://doi.org/10.3390/cryst12091308.

    Article  CAS  Google Scholar 

  13. Kessler JO. Individual and collective dynamics of swimming cells. J Fluid Mech. 1986;173:191–205. https://doi.org/10.1017/S0022112086001131.

    Article  Google Scholar 

  14. Kuznetsov AV, Avramenko AA. Stability analysis of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium. Transp Porous Med. 2003;53:95–104. https://doi.org/10.1023/A:1023582001592.

    Article  Google Scholar 

  15. Kuznetsov AV. Modeling bioconvection in porous media. In: Vafai K, editor. Handbook of porous media chap 16. 2nd ed. New York: Taylor and Francis; 2005. p. 645–86.

    Google Scholar 

  16. Avramenko AA, Kuznetsov AV. The onset of convection in a suspension of gyrotactic microorganisms in superimposed fluid and porous layers: effect of vertical through flow. Transp Porous Med. 2006;65:159–76. https://doi.org/10.1007/s11242-005-6086-3.

    Article  Google Scholar 

  17. Sharma YD, Kumar V. Overstability analysis of thermo-bioconvection saturating a porous medium in a suspension of gyrotactic microorganisms. Trans Porous Med. 2011;90:673–85. https://doi.org/10.1007/s11242-011-9810-1.

    Article  CAS  Google Scholar 

  18. Xu H, Cui J. Mixed convection flow in a channel with slip in a porous medium saturated with a nanofluid containing both nanoparticles and microorganisms. Int J Heat Mass Transf. 2018;125:1043–53. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.124.

    Article  CAS  Google Scholar 

  19. Kuznetsov AV, Nield DA. Thermal instability in a porous medium layer saturated by a nanofuid: Brinkman model. Transp Porous Med. 2010;81:409–22. https://doi.org/10.1007/s11242-009-9413-2.

    Article  Google Scholar 

  20. Zhao M, Wang S, Wang H, Mahabaleshwar US. Darcy-Brinkman bio-thermal convection in a suspension of gyrotactic microorganisms in a porous medium. Neural Comput Appl. 2019;31:1061–7. https://doi.org/10.1007/s00521-017-3137-y.

    Article  Google Scholar 

  21. Zen’kovskaya SM, Simonenko IB. Effect of high frequency vibration on convection initiation. Fluid Dyn. 1966;1:35–7. https://doi.org/10.1007/BF01022147.

    Article  Google Scholar 

  22. Gershuni GZ, Lyubimov DU. Thermal vibrational convection. New York: Wiley; 1988.

    Google Scholar 

  23. Rogers JL, Schatz MF, Bougie JL, Swift JB. Rayleigh–Bénard convection in a vertically oscillated fluid layer. Phys Rev Lett. 2000;84:87–90. https://doi.org/10.1103/PhysRevLett.84.87.

    Article  CAS  PubMed  Google Scholar 

  24. Vorobev A, Lyubimov D, Lyubimova T, Mojatbi A, Zappoli B. Validations of averaged equations for thermal vibrational convection in near-critical fluids. C R Mecanique. 2004;332:803–9. https://doi.org/10.1016/j.crme.2004.05.003.

    Article  Google Scholar 

  25. Razi YP, Mojtabi A, Charrier-Mojtabi MC. A summary of new predictive high frequency thermo-vibrational models in porous media. Transp Porous Med. 2009;77:207–28. https://doi.org/10.1007/s11242-008-9332-7.

    Article  Google Scholar 

  26. Lyubimov D, Kolchanova E, Lyubimova T. Vibration effect on the nonlinear regimes of thermal convection in a two-layer system of fluid and saturated porous medium. Transp Porous Med. 2015;106:237–57. https://doi.org/10.1007/s11242-014-0398-0.

    Article  CAS  Google Scholar 

  27. Lyubimova TP, Kolchanova EA. The onset of double-diffusive convection in a superposed fluid and porous layer under high-frequency and small-amplitude vibrations. Transp Porous Med. 2018;122:97–124. https://doi.org/10.1007/s11242-017-0991-0.

    Article  CAS  Google Scholar 

  28. Gudina EJ, Pereira JF, Costa R, Coutinho JA, Teixeira JA, Rodrigues LR. Biosurfactant-producing and oil-degrading bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. J Hazard Mater. 2013;261:106–13. https://doi.org/10.1016/j.jhazmat.2013.06.071.

    Article  CAS  PubMed  Google Scholar 

  29. Hong E, Jeong MS, Kim TH, Lee JH, Cho JH, Lee KS. Development of coupled biokinetic and thermal model to optimize cold-water microbial enhanced oil recovery (MEOR) in homogenous reservoir. Sustainability. 2019;11:1652. https://doi.org/10.3390/su11061652.

    Article  CAS  Google Scholar 

  30. Izadpanah F, Sadegh Sadeghi M, Ghodrat M, Behnia M. Natural thermo-bio convection of gyrotactic micro-organisms in a square cavity with two heaters inside: application to ocean ecosystems. Int J Environ Stud. 2022. https://doi.org/10.1080/00207233.2022.2050578.

    Article  Google Scholar 

  31. Sharma YD, Kumar V. The effect of high-frequency vertical vibration in a suspension of gyrotactic micro-organisms. Mech Res Commun. 2012;44:40–4. https://doi.org/10.1016/j.mechrescom.2012.06.001.

    Article  Google Scholar 

  32. Kumar V, Sharma YD. Instability analysis of gyrotactic microorganisms: a combined effect of high-frequency vertical vibration and porous media. Transp Porous Media. 2014;102:153–65. https://doi.org/10.1007/s11242-014-0268-9.

    Article  Google Scholar 

  33. Khan WA, Ali M, Shahzad M, Sultan F, Irfan M, Asghar Z. A note on activation energy and magnetic dipole aspects for Cross nanofluid subjected to cylindrical surface. Appl Nanosci. 2020;10:3235–44. https://doi.org/10.1007/s13204-019-01220-0.

    Article  CAS  Google Scholar 

  34. Khan WA, Sun H, Shahzad M, Ali M, Sultan F, Irfan M. Importance of heat generation in chemically reactive flow subjected to convectively heated surface. Indian J Phys. 2021;95:89–97. https://doi.org/10.1007/s12648-019-01678-2.

    Article  CAS  Google Scholar 

  35. Kumar V, Srikanth K. An overstability analysis of vertically vibrated suspension of active swimmers subjected to thermal stratification. SN Appl Sci. 2021;3:612. https://doi.org/10.1007/s42452-021-04545-0.

    Article  Google Scholar 

  36. Kushwaha AK, Sharma YD, Saini S. Impact of vertical vibration and gyrotactic microorganisms on stability of thermo-bioconvection. Mech Res Commun. 2021;116: 103769. https://doi.org/10.1016/j.mechrescom.2021.103769.

    Article  Google Scholar 

  37. Kushwaha AK, Sharma YD. Significance of vertical vibration on the stability of thermo-bioconvection in a suspension of oxytactic microorganisms. Int Commun Heat Mass Transf. 2022;133: 105943. https://doi.org/10.1016/j.icheatmasstransfer.2022.105943.

    Article  Google Scholar 

  38. Anjum N, Khan WA, Hobiny A, Azam M, Waqas M, Irfan M. Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic. Case Stud Ther Eng. 2022;39: 102427. https://doi.org/10.1016/j.csite.2022.102427.

    Article  Google Scholar 

  39. Hussain S, Aly AM, Öztop HF. Magneto-bioconvection flow of hybrid nanofluid in the presence of oxytactic bacteria in a lid-driven cavity with a streamlined obstacle. Int Commun Heat Mass Transf. 2022;134: 106029. https://doi.org/10.1016/j.icheatmasstransfer.2022.106029.

    Article  CAS  Google Scholar 

  40. Waqas M, Khan WA, Pasha AA, Islam N, Rahman MM. Dynamics of bioconvective Casson nanoliquid from a moving surface capturing gyrotactic microorganisms, magnetohydrodynamics and stratifications. Therm Sci Eng Prog. 2022;36: 101492. https://doi.org/10.1016/j.tsep.2022.101492.

    Article  CAS  Google Scholar 

  41. Tabrez M, Khan WA. Exploring physical aspects of viscous dissipation and magnetic dipole for ferromagnetic polymer nanofluid flow. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2135794.

    Article  Google Scholar 

  42. Hussain Z, Khan WA. Impact of thermal-solutal stratifications and activation energy aspects on time-dependent polymer nanoliquid. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2128229.

    Article  Google Scholar 

  43. Khan WA. Impact of time-dependent heat and mass transfer phenomenon for magnetized Sutterby nanofluid flow. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2140857.

    Article  Google Scholar 

  44. Finlayson BA. The Method of Weighted Residuals and Variational Principles. Academic Press, New York 1972.

    Google Scholar 

  45. Chandrasekhar S. Hydrodynamic and hydromagnetic stability. New York: Dove; 1981.

    Google Scholar 

  46. Nield DA, Bejan A. Convection in Porous Media. Springer, New York, 2017.

    Book  Google Scholar 

  47. Nield DA, Kuznetsov AV. The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: oscillatory convection. Int J Therm Sci. 2006;45:990–7. https://doi.org/10.1016/j.ijthermalsci.2006.01.007.

    Article  CAS  Google Scholar 

  48. Nield DA, Barletta A. The Horton–Rogers–Lapwood Problem revisited: the effect of pressure work. Transp Porous Media. 2009;77:143–58. https://doi.org/10.1007/s11242-009-9341-1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers for their elaborative and critical comments about the research paper and suggestions thereof, which helped them to improve the present work considerably.

Funding

No specific grant for this research was supplied by funding organizations in the public, private, or nonprofit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Kumar.

Ethics declarations

Conflict of interest

The authors reported no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The functions \(\psi \), \(\psi _{1}\), \(\psi _{2}\), and \(\psi _{3}\) defined in Eq. (28), \(\delta _{\mathrm{i}}\), \(\gamma _{\mathrm{i}} \)(\(i=1...7\)) in Eq. (29) and \(\varphi _{\mathrm{i}} = \delta _{\mathrm{i}}/\gamma _{\mathrm{i}},(i=1,2....7)\) in Eq. (36) are given as follows:

$$\begin{aligned} \psi&= {} \big (1+\alpha _{0}\big )G\psi _{1}+\big [1+a^{\jmath ^2}\big (1-\alpha _{0}\big )G\big ] \psi _{2} \end{aligned}$$
(38)
$$\begin{aligned} \psi _{1}&= {} 4\Big (e^\textrm{Pe}-1\Big )/Pe\end{aligned}$$
(39)
$$\begin{aligned} \psi _{2}&= {} \Big (e^\textrm{Pe}+1\Big )\Big (8/\big (Pe\big )^{2}\Big )-\Big (e^\textrm{Pe}-1\Big )\Big (16/\big (Pe\big )^{3}+1/Pe\Big )\end{aligned}$$
(40)
$$\begin{aligned} \psi _{3}&= {} \Big (e^\textrm{Pe}-1\Big )\Big (24/\big (Pe\big )^{5}+2/\big (Pe\big )^{3}\Big )-\Big (12/\big (Pe\big )^{4}\Big )\nonumber \\ & \quad \times & {} \Big (e^\textrm{Pe}+1\Big )\end{aligned}$$
(41)
$$\begin{aligned} f_{1}&= {} f_{1}\Big (R_\textrm{v}, R_\textrm{t}\Big )= 900 \psi _{3} R_\textrm{v}-30 \mho R_\textrm{t}\end{aligned}$$
(42)
$$\begin{aligned} f_{2}&= {} f_{2}\Big ( R_\textrm{a}, R_\textrm{b}, R_\textrm{v}, R_\textrm{t}\Big )= \Big [ 30\psi _{3}R_\textrm{v}- \mho R_\textrm{t}\Big ]\Big ( R_\textrm{a}/R_\textrm{b}\Big )\end{aligned}$$
(43)
$$\begin{aligned} f_{3}&= {} f_{3}\Big (R_\textrm{a}, R_\textrm{v}, R_\textrm{t}\Big )=\Big ( 30\psi _{3}R_\textrm{v}- \mho R_\textrm{t} \Big )R_\textrm{a}\end{aligned}$$
(44)
$$\begin{aligned} \delta _{1}&= {} D_\textrm{a}\Big [20\alpha ^{\jmath ^2}+\alpha ^{\jmath ^4}\Big ]+\Big (10+\alpha ^{\jmath ^2}\Big ),\hspace{0.5em} \gamma _{1}=\Big (10+\alpha ^{\jmath ^2}\Big )c_\textrm{a}Da\end{aligned}$$
(45)
$$\begin{aligned} \delta _{2}&= {} \Big (10+a^{\jmath ^2}\Big )^{2},\hspace{0.5em}\gamma _{2}= \Big (10+a^{\jmath ^2}\Big )Pr\end{aligned}$$
(46)
$$\begin{aligned} \delta _{3}&= {} \Big [\alpha ^{\jmath ^2}\Big (120+\big ({\text{Pe}}\big )^{4}-10\big ({\text{Pe}}\big )^{2}\Big )+10\big ({\text{Pe}}\big )^{4}\Big ]\end{aligned}$$
(47)
$$\begin{aligned} \gamma _{3}&= {} \Big (120+\big ({\text{Pe}}\big )^{4}-10\big ({\text{Pe}}\big )^{2}+Big){\text{LePr}}\phi \end{aligned}$$
(48)
$$\begin{aligned} \delta _{4}&= {} 30 \alpha ^{\jmath ^2}\psi \Big (10-\big ({\text{Pe}}\big )^{2}\Big )\Big (10+\alpha ^{\jmath ^2}\Big )^{2}\end{aligned}$$
(49)
$$\begin{aligned} \gamma _{4}&= {} 30 \alpha ^{\jmath ^2}\psi \Big (10-\big ({\text{Pe}}\big )^{2}\Big )\Big (10+\alpha ^{\jmath ^2}\Big )Pr\end{aligned}$$
(50)
$$\begin{aligned} \delta _{5}&= {} \alpha ^{\jmath ^2}\Big (10+\alpha ^{\jmath ^2}\Big )\Big [\alpha ^{\jmath ^2}\Big (120+\big ({\text{Pe}}\big )^{4}-10\big ({\text{Pe}}\big )^{2}\Big )+10\big ({\text{Pe}}\big )^{4}\Big ]\end{aligned}$$
(51)
$$\begin{aligned} \gamma _{5}&= {} \alpha ^{\jmath ^2}\Big (10+\alpha ^{\jmath ^2}\Big )\Big (120+\big ({\text{Pe}}\big )^{4}-10\big ({\text{Pe}}\big )^{2}\Big ){\text{LePr}}\phi \end{aligned}$$
(52)
$$\begin{aligned} \delta _{6}&= {} \alpha ^{\jmath ^4}\psi \Big (10-\big ({\text{Pe}}\big )^{2}\Big )\Big (10+ \alpha ^{\jmath ^2}\Big )f_{1}, \gamma _{6}= \alpha ^{\jmath ^4}\psi \Big (10-\big ({\text{Pe}}\big )^{2}\Big )f_{1}Pr\end{aligned}$$
(53)
$$\begin{aligned} \delta _{7}&= {} \alpha ^{\jmath ^4}\Big [\alpha ^{\jmath ^2}\Big (120+\big ({\text{Pe}}\big )^{4}-10\big ({\text{Pe}}\big )^{2}\Big )+10\big ({\text{Pe}}\big )^{4}\Big ]f_{3}\end{aligned}$$
(54)
$$\begin{aligned} \gamma _{7}&= {} \alpha ^{\jmath ^4}\Big (120+\big ({\text{Pe}}\big )^{4}-10\big ({\text{Pe}}\big )^{2}\Big )f_{3}{\text{LePr}}\phi \end{aligned}$$
(55)
$$\begin{aligned} \eta _{1}&= {} 12\Big [ D_\textrm{a}\Big (\alpha ^{\jmath ^4}+20 \alpha ^{\jmath ^2}\Big )+\Big (10+\alpha ^{\jmath ^2}\Big )\Big ]/10\end{aligned}$$
(56)
$$\begin{aligned} \eta _{2}&= {} \Big [ D_\textrm{a}\Big (\alpha ^{\jmath ^4}+20 \alpha ^{\jmath ^2}\Big )+\Big (10+\alpha ^{\jmath ^2}\Big )\Big ]\Big (10+ \alpha ^{\jmath ^2}\Big )/\alpha ^{\jmath ^2}\end{aligned}$$
(57)
$$\begin{aligned} \varphi _{2}&= {} \varphi _{4} = \varphi _{6}=Pr/\Big (10+\alpha ^{\jmath ^2}\Big ),\hspace{0.5em} \varphi _{3} = \varphi _{5} = \varphi _{7} = {\text{LePr}}\phi /\alpha ^{\jmath ^2}\end{aligned}$$
(58)
$$\begin{aligned} \varphi _{1}&= {} \Big (10+\alpha ^{\jmath ^2}\Big )c_\textrm{a}Da/\Big [D_\textrm{a}\Big (\alpha ^{\jmath ^4}+20 \alpha ^{\jmath ^2}\Big )+\Big (10+\alpha ^{\jmath ^2}\Big )\Big ] \end{aligned}$$
(59)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Srikanth, K. & Grover, D. Darcy–Brinkman analysis of thermo-vibrational convection in gyrotactic swimmers: an overstability theory. J Therm Anal Calorim 148, 10189–10201 (2023). https://doi.org/10.1007/s10973-023-12383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12383-y

Keywords

Navigation