Skip to main content
Log in

Polymorphism and thermodynamic properties of 4-cyano-3-fluorophenyl 4-pentylbenzoate (5CFPB) liquid crystal

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The polymorphism and thermodynamic properties of 4-cyano-3-fluorophenyl 4-pentylbenzoate were elucidated by combining adiabatic calorimetry, differential scanning calorimetry (DSC), simultaneous X-ray diffractometry and DSC (XRD–DSC), and polarized optical microscopy (POM). Seven phases were identified: the nematic phase (Tc = 297.15 K), glass of the nematic phase (Tg ≈ 208 K), crystal I (Tfus = 302.80 K), crystal II, crystal III (Tfus = 303.93 K), crystal IV, and isotropic liquid. A transition between crystal IV and the nematic phase (Ttrs = 287.35 K) as well as solid–solid-phase transitions in crystal I (Ttrs = 248.8 K) and III (Ttrs1 = 121.6 K; Ttrs2 = 178.7 K) was detected, and the thermodynamic quantities of the transitions were determined. The relationships between the thermodynamic stabilities of all phases were verified: Crystal I is the most stable below 301 K, whereas crystal III is the most stable between 301 and 304 K. The crystallization kinetics depend on the size and thermal history of the sample: Crystals II and IV were observed only during the measurements of adiabatic calorimetry (gram-amount of the sample being subjected to a lowest temperature of 78 K), whereas crystal I was not prominently observed during the DSC, XRD–DSC, and POM measurements after the sample had been melted (milligram-amount of the sample being subjected to a lowest temperature of 170 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vertogen G, Jeu WH. Thermotropic liquid crystals, fundamentals. Springer series in chemical physics. Berlin: Springer; 1988.

    Book  Google Scholar 

  2. Uchida J, Soberats B, Gupta M, Kato T. Advanced functional liquid crystals. Adv Mater. 2022;34(23):2109063. https://doi.org/10.1002/adma.202109063.

    Article  CAS  Google Scholar 

  3. Maria M, Muhammad Aamir I, Wajeehah S, Syed Zaheer Ud D, Mujtaba I, Nadia A, et al. Overview of liquid crystal research: computational advancements, challenges, future prospects and applications. In: Pankaj Kumar C, Abdel-Baset MAI, editors., et al., Liquid crystals, Ch. 2. Rijeka: IntechOpen; 2022.

    Google Scholar 

  4. Qu R, George TF, Li G. Development in liquid crystal microcapsules: fabrication, optimization and applications. J Mater Chem C. 2022;10(2):413–32. https://doi.org/10.1039/D1TC04395A.

    Article  CAS  Google Scholar 

  5. Hird M. Fluorinated liquid crystals: properties and applications. Chem Soc Rev. 2007;36(12):2070–95. https://doi.org/10.1039/B610738A.

    Article  CAS  PubMed  Google Scholar 

  6. Guittard F, Taffin de Givenchy E, Geribaldi S, Cambon A. Highly fluorinated thermotropic liquid crystals: an update. J Fluorine Chem. 1999;100(1):85–96. https://doi.org/10.1016/S0022-1139(99)00205-5.

    Article  CAS  Google Scholar 

  7. Saccone M, Spengler M, Pfletscher M, Kuntze K, Virkki M, Wölper C, et al. Photoresponsive halogen-bonded liquid crystals: the role of aromatic fluorine substitution. Chem Mater. 2019;31(2):462–70. https://doi.org/10.1021/acs.chemmater.8b04197.

    Article  CAS  Google Scholar 

  8. Kelly SM. The synthesis and transition temperatures of benzoate ester derivatives of 2-fluoro-4-hydroxy-and 3-fluoro-4-hydroxybenzonitriles. Helv Chim Acta. 1984;67(6):1572–9. https://doi.org/10.1002/hlca.19840670623.

    Article  CAS  Google Scholar 

  9. Gray GW, Hird M, Lacey D, Toyne KJ. The synthesis and transition temperatures of some fluoro-substituted 4-cyanophenyl and 4-cyanobiphenyl-4′-yl 4-pentyl- and 4-butoxy-benzoates. Mol Cryst Liq Cryst Inc Nonlinear Opt. 1989;172(1):165–89. https://doi.org/10.1080/00268948908042160.

    Article  CAS  Google Scholar 

  10. McDonnell DG, Raynes EP, Smith RA. Dipole moments and dielectric properties of fluorine substituted nematic liquid crystals. Liq Cryst. 1989;6(5):515–23. https://doi.org/10.1080/02678298908034171.

    Article  CAS  Google Scholar 

  11. Rozwadowski T, Massalska-Arodź M, Juszyńska E, Krawczyk J, Wojnarowska Ż, Paluch M. Dielectric spectroscopy studies of 4-cyano-3-fluorophenyl 4-butylbenzoate liquid crystal at high pressure. Acta Phys Pol A. 2012;122:378–81. https://doi.org/10.12693/APhysPolA.122.378.

    Article  CAS  Google Scholar 

  12. Rozwadowski T, Massalska-Arodź M, Krawczyk J, Juszyńska-Gałązka E. Molecular dynamics of 4-cyano-3-fluorophenyl 4-butylbenzoate (4CFPB) glass-forming liquid crystal in unidirectional silicon nanopores. Liq Cryst. 2014;41(8):1073–9. https://doi.org/10.1080/02678292.2014.900706.

    Article  CAS  Google Scholar 

  13. Massalska-arodź M, Krawczyk J, Juszyńska E, Kocot A, Inaba A. Molecular dynamics of 4-cyano-3-fluorophenyl 4-butylbenzoate as studied by dielectric relaxation spectroscopy. Acta Phys Pol A. 2010;117:532–6.

    Article  Google Scholar 

  14. Rozwadowski T, Massalska-arodź M, Kolek Ł, Grzybowska K, Bąk A, Chłędowska K. Kinetics of cold crystallization of 4-cyano-3-fluorophenyl 4-butylbenzoate (4CFPB) glass forming liquid crystal. I. Nonisothermal process as studied by microscopic, calorimetric, and dielectric methods. Cryst Growth Des. 2015;15:2891–900.

    Article  CAS  Google Scholar 

  15. Juszyńska-Gałązka E, Zając W. Small angle neutron scattering on n-cyano-3-fluorophenyl 4-butylbenzoates (n = 4,6,8) liquid crystals in mesoporous AAO membranes. A feasibility study. Phase Transit. 2023. https://doi.org/10.1080/01411594.2023.2167656.

    Article  Google Scholar 

  16. Inaba A, Suzuki H, Massalska-Arodź M, Rozwadowski T. Polymorphism and thermodynamic functions of liquid crystalline material 4-cyano-3-fluorophenyl 4-butylbenzoate. J Chem Thermodyn. 2012;54:204–10. https://doi.org/10.1016/j.jct.2012.03.031.

    Article  CAS  Google Scholar 

  17. Moura Ramos JJ, Diogo HP. Phase behavior and slow molecular dynamics in the glassy state and in the glass transformation of a nematic liquid crystal: 4CFPB. Liq Cryst. 2020;47(4):604–17. https://doi.org/10.1080/02678292.2019.1663284.

    Article  CAS  Google Scholar 

  18. Juszyńska-Gałązka E, Zając W. Mesomorphic behaviour and vibrational dynamics of nCFPB liquid crystalline homologues. Phase Transit. 2019;92(12):1077–88. https://doi.org/10.1080/01411594.2019.1669035.

    Article  CAS  Google Scholar 

  19. Juszyńska-Gałązka E, Massalska-Arodź M, Budziak A, Osiecka N, Madej D, Majda D. Polymorphism, structure and dynamics investigations of 4-cyano-3-fluorophenyl 4′-n-octylbenzoate (8CFPB) liquid crystal. Vib Spectrosc. 2017;92:119–26. https://doi.org/10.1016/j.vibspec.2017.05.009.

    Article  CAS  Google Scholar 

  20. Umeda M, Wakabayashi T, Kamiyama T, Suzuki H. Thermodynamic investigation on melting and recrystallization of poly(dimethylsiloxane) rubbers under strain. Polymer. 2022;254:125105. https://doi.org/10.1016/j.polymer.2022.125105.

    Article  CAS  Google Scholar 

  21. Analysis TJSoCaT. Comprehensive handbook of calorimetry and thermal analysis. New York: Wiley; 2004.

    Google Scholar 

  22. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Zsigmondy R, editor. Kolloidchemie Ein Lehrbuch. Berlin, Heidelberg: Springer Berlin Heidelberg; 1912. p. 387–409.

  23. Suzuki H, Inaba A, Krawczyk J, Massalska-Arodź M. Thermodynamic properties of chiral liquid crystalline material (S)-4-(2-methylbutyl)-4′-cyanobiphenyl (5∗CB). J Chem Thermodyn. 2008;40(8):1232–42. https://doi.org/10.1016/j.jct.2008.04.001.

    Article  CAS  Google Scholar 

  24. Saito K, Massalska-Arodz M, Ikeuchi S, Maekawa M, Sciesinski J, Sciesinska E, et al. Thermodynamic study on a chiral glass former, 4-(1-methylheptyloxy)-4’-cyanobiphenyl. J Phys Chem B. 2004;108(18):5785–90. https://doi.org/10.1021/jp049777v.

    Article  CAS  Google Scholar 

  25. Juszyńska E, Jasiurkowska M, Massalska-Arodź M, Takajo D, Inaba A. Phase transition and structure studies of a liquid crystalline schiff-base compound (4O.8). Mol Cryst Liq Cryst. 2011;540(1):127–34. https://doi.org/10.1080/15421406.2011.568361.

    Article  CAS  Google Scholar 

  26. Sorai M, Saito K. Alkyl chains acting as entropy reservoir in liquid crystalline materials. Chem Rec. 2003;3(1):29–39. https://doi.org/10.1002/tcr.10046.

    Article  CAS  PubMed  Google Scholar 

  27. Kazuya S, editor. What roles do alkyl chains of mesogens play? Proc.SPIE; 2012.

Download references

Acknowledgements

The authors thank the Division of Joint Research Center, Kindai University, for DSC and XRD–DSC measurements. This study was financially supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI, Grant Number 22K03561). The authors thank Prof. K. Sugimoto for his advice on the XRD analyses.

Author information

Authors and Affiliations

Authors

Contributions

SE was involved in writing—original draft, investigation, methodology, data curation, and formal analysis. MU contributed to investigation and methodology. TY assisted with methodology. EJ-G carried out project administration. YM performed validation. HS was responsible for conceptualization, project administration, and writing—review and editing.

Corresponding author

Correspondence to Hal Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enomoto, S., Umeda, M., Yamamoto, T. et al. Polymorphism and thermodynamic properties of 4-cyano-3-fluorophenyl 4-pentylbenzoate (5CFPB) liquid crystal. J Therm Anal Calorim 148, 10081–10092 (2023). https://doi.org/10.1007/s10973-023-12373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12373-0

Keywords

Navigation