Skip to main content
Log in

Flame retardancy of basalt fiber-reinforced PBT composite: effect of red phosphorus and TiO2 synergism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Light-weight and fire safety are crucial requirements for fiber-reinforced polymer composites used in mainly the logistics sector. Phosphorus-based FR agents can be one of the effective solutions to improve the flame retardancy properties of highly flammable poly(butylene terephthalate) (PBT) and its composites reinforcing with various high-performance fibers. In this perspective, the purpose of this study was to see how microencapsulated red phosphorus (mRP) affected the flame retardancy of a chopped basalt fiber (BF)-reinforced PBT composite. The composite samples were manufactured with the constant amount of BF (20 mass%) and mRP concentrations ranging from 5 to 20% by mass. A synergistic study between the mRP (14 mass%) and a neat TiO2 (1 mass%) was also carried out. The TGA, cone calorimeter, LOI, and UL-94 V tests were used to characterize samples. Char residues of composites were analyzed via the ATR-FT-IR and SEM inspections. Test results released that the HRR values of PBT matrix and BF-reinforced PBT composite decrease while the char formation and the LOI values steadily increased with the incorporation of mRP. Remarkable decreases in fire performance parameters were observed between 23 and 55% while the highest residue (35.0%) were achieved with the mRP concentration of 20 mass%. The increment in LOI at about 50% and a V0 rating in the UL-94 V test were obtained when the added amount of mRP reached to 20 mass%. A synergism was seen between the mRP and TiO2 in the condensed phase considering the results of MLC test.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang W, Yang B, Lu H, Song L, Hu Y. Effect of modified carbon nanotube on the thermal behavior, flame retardancy and mechanical properties of poly(1,4-butylene terephthalate)/aluminum phosphinate composites. Ind Eng Chem Res. 2014;53(48):18489–96. https://doi.org/10.1021/ie503039e.

    Article  CAS  Google Scholar 

  2. Gallo E, Braun U, Schartel B, Russo P, Acierno D. Halogen-free flame retarded poly(butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polym Degrad Stab. 2009;94(8):1245–53. https://doi.org/10.1016/j.polymdegradstab.2009.04.014.

    Article  CAS  Google Scholar 

  3. Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate). Macromol Mater Eng. 2008;293(3):206–17. https://doi.org/10.1002/mame.200700330.

    Article  CAS  Google Scholar 

  4. Brehme S, Köppl T, Schartel B, Altstädt V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. E-Polymers. 2014;14(3):193–208. https://doi.org/10.1515/epoly-2014-0029.

    Article  CAS  Google Scholar 

  5. Vothi H, Nguyen C, Pham LH, Kim J, Hoang D. Degradation mechanism and flame retardancy of aluminum phosphonate in glass fiber-reinforced poly(butylene terephthalate). Polym Bull. 2020;78(12):6761–76. https://doi.org/10.1007/s00289-020-03455-2.

    Article  CAS  Google Scholar 

  6. Köppl T, Brehme S, Wolff-Fabris F, Altstädt V, Schartel B, Döring M. Structure−property relationships of halogen-free flame-retarded poly(butylene terephthalate) and glass fiber reinforced PBT. J Appl Polym Sci. 2012;124(1):9–18. https://doi.org/10.1002/app.34910.

    Article  CAS  Google Scholar 

  7. Louisy J, Bourbigot S, Duquesne S, Desbois P, König A, Klatt M. Novel synergists for flame retarded glass-fiber reinforced poly(1,4-butylene terephthalate). Polimery. 2013;58(5):403–12.

    Article  CAS  Google Scholar 

  8. Han X, Zhao J, Liu S, Yuan Y. Performance improvement of flame-retarded poly(butylene terephthalate)/aluminum diethylphosphinate composites by epoxy-functional polysiloxane. High Perform Polym. 2014;27(6):742–8. https://doi.org/10.1177/0954008314559553.

    Article  CAS  Google Scholar 

  9. Yang W, Song L, Hu Y, Lu H, Yuen RKK. Investigations of thermal degradation behavior and fire performance of halogen-free flame retardant poly(1,4-butylene terephthalate) composites. J Appl Polym Sci. 2011;122(3):1480–8. https://doi.org/10.1002/app.34119.

    Article  CAS  Google Scholar 

  10. Yang W, Hu Y, Tai Q, Lu H, Song L, Yuen RKK. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Compos A Appl Sci Manuf. 2011;42(7):794–800. https://doi.org/10.1016/j.compositesa.2011.03.009.

    Article  CAS  Google Scholar 

  11. Qi Y, Wu W, Liu X, Qu H, Xu J. Preparation and characterization of aluminum hypophosphite/reduced graphene oxide hybrid material as a flame retardant additive for PBT. Fire Mater. 2017;41(3):195–208. https://doi.org/10.1002/fam.2382.

    Article  CAS  Google Scholar 

  12. Liu P, Liu M, Gao C, Wang F, Ding Y, Wen B, et al. Preparation, characterization and properties of a halogen-free phosphorous flame-retarded poly(butylene terephthalate) composite based on a DOPO derivative. J Appl Polym Sci. 2013;130(2):1301–7. https://doi.org/10.1002/app.39318.

    Article  CAS  Google Scholar 

  13. Köppl T, Brehme S, Pospiech D, Fischer O, Wolff-Fabris F, Altstädt V, et al. Influence of polymeric flame retardants based on phosphorus-containing polyesters on morphology and material characteristics of poly(butylene terephthalate). J Appl Polym Sci. 2013;128(5):3315–24. https://doi.org/10.1002/app.38520.

    Article  CAS  Google Scholar 

  14. Chen L, Luo Y, Hu Z, Lin G-P, Zhao B, Wang Y-Z. An efficient halogen-free flame retardant for glass-fibre-reinforced poly(butylene terephthalate). Polym Degrad Stab. 2012;97(2):158–65. https://doi.org/10.1016/j.polymdegradstab.2011.11.003.

    Article  CAS  Google Scholar 

  15. Courtat J, Mélis F, Taulemesse J-M, Bounor-Legaré V, Sonnier R, Ferry L, et al. Effect of phosphorous-modified silica on the flame retardancy of polybutylene terephthalate based nanocomposites. Polym Degrad Stab. 2017;143:74–84. https://doi.org/10.1016/j.polymdegradstab.2017.06.014.

    Article  CAS  Google Scholar 

  16. Balabanovich AI, Zevaco TA, Schnabel W. Fire retardance in poly(butylene terephthalate). The effects of red phosphorus and radiation-induced cross-links. Macromol Mater Eng. 2004;289(2):181–90. https://doi.org/10.1002/mame.200300153.

    Article  CAS  Google Scholar 

  17. Cai T, Guo F, Jian-fen C. Synergetic fire retardant effect of nano CG-ATH and red phosphorus for PBT. Polymer Mater Sci Eng. 2006;22(6):205.

    CAS  Google Scholar 

  18. Yang W, Zhang Y-R, Yuen AC-Y, Chen TB-Y, Chan M-C, Peng L-Z, et al. Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: Effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem Eng J. 2017;321:257–67. https://doi.org/10.1016/j.cej.2017.03.123.

    Article  CAS  Google Scholar 

  19. Keshavarzian A, Haghighi MN, Afshar Taromi F, Abedini H. Phosphorus-based flame retardant poly (butylene terephthalate): synthesis, flame retardancy and thermal behavior. Polym Degradat Stabil. 2020;180:109310. https://doi.org/10.1016/j.polymdegradstab.2020.109310.

    Article  CAS  Google Scholar 

  20. Casu A, Camino G, De Giorgi M, Flath D, Laudi A, Morone V. Effect of glass fibres and fire retardant on the combustion behaviour of composites, glass fibres–poly(butylene terephthalate). Fire Mater. 1998;22:7–14.

    Article  CAS  Google Scholar 

  21. Wittek T, Tanimoto T. Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres. Express Polym Lett. 2008;2(11):810–22. https://doi.org/10.3144/expresspolymlett.2008.94.

    Article  CAS  Google Scholar 

  22. Yang W, Jia Z, Chen Y, Zhang Y, Si J, Lu H, et al. Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite: thermal degradation, flame retardancy and mechanical properties. RSC Adv. 2015;5(128):105869–79. https://doi.org/10.1039/c5ra18606d.

    Article  CAS  Google Scholar 

  23. Wu Q, Chi K, Wu Y, Lee S. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Mater Des. 2014;60:334–42. https://doi.org/10.1016/j.matdes.2014.04.010.

    Article  CAS  Google Scholar 

  24. Wang S, Zhong J, Gu Y, Li G, Cui J. Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites. Polym Compos. 2020;41(10):4181–91. https://doi.org/10.1002/pc.25702.

    Article  CAS  Google Scholar 

  25. Yao D, Yin G, Bi Q, Yin X, Wang N, Wang DY. Basalt fiber modified ethylene vinyl acetate/magnesium hydroxide composites with balanced flame retardancy and improved mechanical properties. Polymers (Basel). 2020;12(9):2107. https://doi.org/10.3390/polym12092107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo Y, Zhou M, Yin GZ, Kalali E, Wang N, Wang DY. Basalt fiber-based flame retardant epoxy composites: preparation, thermal properties, and flame retardancy. Mater (Basel). 2021;14(4):902. https://doi.org/10.3390/ma14040902.

    Article  CAS  Google Scholar 

  27. Xu J, Fan J, Kang C, Niu L, Ju C. Study on mechanical properties of nano-Sb2O3/BEO-PBT flame retardant composites reinforced by surface-modified basalt fiber. J Adhes Sci Technol. 2021;36(13):1458–78. https://doi.org/10.1080/01694243.2021.1972652.

    Article  CAS  Google Scholar 

  28. Arslan Ç, DoĞAn M. The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. Turk J Chem. 2022;46(5):1702–9. https://doi.org/10.55730/1300-0527.3473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Andrzejewski J, Michalowski S. Development of a new type of flame retarded biocomposite reinforced with a biocarbon/basalt fiber system: a comparative study between poly(lactic acid) and polypropylene. Polymers (Basel). 2022;14(19):4086. https://doi.org/10.3390/polym14194086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Green J. A review of phosphorus-containing flame retardants. J Fire Sci. 1992;10(6):470–87.

    Article  CAS  Google Scholar 

  31. Arslan C, Dogan M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites. Compos B Eng. 2018;146:145–54. https://doi.org/10.1016/j.compositesb.2018.04.023.

    Article  CAS  Google Scholar 

  32. Arslan C, Dogan M. The mechanical and thermal properties of chopped basalt fiber-reinforced poly (butylene terephthalate) composites: Effect of fiber amount and length. J Compos Mater. 2019;53(17):2465–75. https://doi.org/10.1177/0021998319830775.

    Article  CAS  Google Scholar 

  33. Tayfun Ü. Application of sustainable treatments to fiber surface for performance improvement of elastomeric polyurethane reinforced with basalt fiber. J Vinyl Add Tech. 2023. https://doi.org/10.1002/vnl.22000.

    Article  Google Scholar 

  34. Fiore V, Scalici T, Di Bella G, Valenza A. A review on basalt fibre and its composites. Compos B Eng. 2015;74:74–94. https://doi.org/10.1016/j.compositesb.2014.12.034.

    Article  CAS  Google Scholar 

  35. Andrzejewski J, Danielak A, Piasecki A, Islam A, Szostak M. Biocarbon-based sustainable reinforcing system for technical polymers. The structure-properties correlation between polycarbonate (PC) and polybutylene terephthalate (PBT)-based blends containing acrylonitrile-butadiene-styrene (ABS). Sustain Mater Technol. 2023. https://doi.org/10.1016/j.susmat.2023.e00612.

    Article  Google Scholar 

  36. Liu YL. Flame-retardant epoxy resins from novel phosphorus-containing novolac. Polymer. 2001;42:3445–54.

    Article  CAS  Google Scholar 

  37. Shieh J-Y, Wang C-S. Synthesis of novel fame retardant epoxy hardeners and properties of cured products. Polymer. 2001;42:7617–25.

    Article  CAS  Google Scholar 

  38. Wu CS, Liu YL, Chiu YC, Chiu YS. Thermal stability of epoxy resins containing flame retardant components: an evaluation with thermogravimetric analysis. Polym Degrad Stab. 2002;78:41–8.

    Article  CAS  Google Scholar 

  39. Levchik GF, Vorobyova SA, Gorbarenko VV, Levchik SV, Weil ED. Some Mechanistic Aspects of the Fire Retardant Action of Red Phosphorus in Aliphatic Nylons. J Fire Sci. 2000;18:172–82.

    Article  CAS  Google Scholar 

  40. Schartel B, Kunze R, Neubert D. Red phosphorus-controlled decomposition for fire retardant PA 66. J Appl Polym Sci. 2002;83(10):2060–71. https://doi.org/10.1002/app.10144.

    Article  CAS  Google Scholar 

  41. Savas LA, Deniz TK, Tayfun U, Dogan M. Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polym Degrad Stab. 2017;135:121–9. https://doi.org/10.1016/j.polymdegradstab.2016.12.001.

    Article  CAS  Google Scholar 

  42. Xie R, Qu B, Hu K. Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free fame retardant LLDPE blends. Polym Degrad Stab. 2001;72:313–21.

    Article  CAS  Google Scholar 

  43. Wu Q, Lü J, Qu B. Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins. Polym Int. 2003;52(8):1326–31. https://doi.org/10.1002/pi.1115.

    Article  CAS  Google Scholar 

  44. Granzow A, Ferrillo RG, Wilson A. The effect of elemental red phosphorus on the thermal degradation of poly(ethylene terephthalate). J Appl Polym Sci. 1977;21:1687–97.

    Article  CAS  Google Scholar 

  45. Laoutid F, Ferry L, Lopez-Cuesta JM, Crespy A. Red phosphorus/aluminium oxide compositions as flame retardants in recycled poly(ethylene terephthalate). Polym Degrad Stab. 2003;82(2):357–63. https://doi.org/10.1016/s0141-3910(03)00213-1.

    Article  CAS  Google Scholar 

  46. Zhou Y, Liu X, Wang F, Hao J, Du J. Effect Of Metal Oxides On Fire Resistance And Char Formation Of Intumescent Flame Retardant Coating. J Inorg Mater. 2014;29:972–8.

    Article  CAS  Google Scholar 

  47. Chen X, Wang Y, Jiao C. Influence of TiO2 particles and APP on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2017;132(1):251–61. https://doi.org/10.1007/s10973-017-6847-6.

    Article  CAS  Google Scholar 

  48. Pan Y-T, Castillo-Rodríguez M, Wang D-Y. Mesoporous metal oxide/pyrophosphate hybrid originated from reutilization of water treatment resin as a novel fire hazard suppressant. Mater Chem Phys. 2018;203:49–57. https://doi.org/10.1016/j.matchemphys.2017.09.040.

    Article  CAS  Google Scholar 

  49. Kim J, Yoo S, Bae J-Y, Yun H-C, Hwang J, Kong B-S. Thermal stabilities and mechanical properties of epoxy molding compounds (EMC) containing encapsulated red phosphorous. Polym Degrad Stab. 2003;81(2):207–13. https://doi.org/10.1016/s0141-3910(03)00090-9.

    Article  CAS  Google Scholar 

  50. Wu N, Li X. Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polym Degrad Stab. 2014;105:265–76. https://doi.org/10.1016/j.polymdegradstab.2014.04.011.

    Article  CAS  Google Scholar 

  51. Dang Z, Anderson BG, Amenomiya Y, Morrow BA. Silica-Supported Zirconia 1 Characterization by Infrared Spectroscopy, Temperature-Programmed Desorption, and X-ray Diffraction. The Journal of Physical Chemistry A. 1995;99:14437–43.

    Article  CAS  Google Scholar 

  52. Efimov AM, Pogareva VG. IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm−1 region. Chem Geol. 2006;229(1–3):198–217. https://doi.org/10.1016/j.chemgeo.2006.01.022.

    Article  CAS  Google Scholar 

  53. Braun U, Balabanovich AI, Schartel B, Knoll U, Artner J, Ciesielski M, et al. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer. 2006;47(26):8495–508. https://doi.org/10.1016/j.polymer.2006.10.022.

    Article  CAS  Google Scholar 

  54. Thomas LC. Interpretation of the infrared spectra of organophosphorus compounds [by] LC Thomas. 1974.

  55. Szolnoki B, Bocz K, Marosi G, Toldy A. Flame retardancy of sorbitol based bioepoxy via combined solid and gas phase action. Polymers (Basel). 2016;8(9):322. https://doi.org/10.3390/polym8090322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang Y, Wang H, Sanchez Casalongue H, Chen Z, Dai H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010;3(10):701–5. https://doi.org/10.1007/s12274-010-0033-5.

    Article  CAS  Google Scholar 

  57. Wang J, Jin C, Sun Q, Zhang Q. Fabrication of nanocrystalline anatase TiO2 in a graphene network as a bamboo coating material with enhanced photocatalytic activity and fire resistance. J Alloy Compd. 2017;702:418–26. https://doi.org/10.1016/j.jallcom.2017.01.263.

    Article  CAS  Google Scholar 

  58. Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym Degrad Stab. 2006;91(12):3103–9. https://doi.org/10.1016/j.polymdegradstab.2006.07.026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Erciyes University Scientific Research Unit under grant no BAP-FDK-2017-7749.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çağrıalp Arslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, Ç., Doğan, M. Flame retardancy of basalt fiber-reinforced PBT composite: effect of red phosphorus and TiO2 synergism. J Therm Anal Calorim 148, 10151–10161 (2023). https://doi.org/10.1007/s10973-023-12370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12370-3

Keywords

Navigation