Skip to main content
Log in

Preparation of zeolitic imidazolate frameworks with high nitrogen as an effective flame retardant to enhance flame retardancy of rigid polyurethane foam

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) begin to be used as flame retardants in polymer in recent years. Currently, most of researches focus on the traditional MOFs, which are designed for gas storage and separation fields. Herein, we reported that the zeolitic imidazolate frameworks with high nitrogen content (N-ZIF-8) were designed for producing more nitrogen-containing compounds to dilute the flammable gas. Subsequently, the effect of N-ZIF-8 on fire safety of RPUF was investigated. The results showed that the percentage of N in N-ZIF-8 increases by 79.17% from 26.12% (ZIF-8) to 46.80% and non-flammable gases produced by N-ZIF-8 is much more in early stage, which benefits to dilute the flammable gas during combustion. Furthermore, N-ZIF-8 increased the char residue of RPUF composites to more than 20% at 800 °C. At 300 s, the total heat release of Ref. RPUF reaches 36.48 MJ m−2, while the THR of RPUF1 and RPUF3 reaches 30.32 MJ m−2 and 26.20 MJ m−2, respectively. In conclusion, zeolitic imidazolate frameworks with high nitrogen was prepared and showed the considerable potential for application as flame retardant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alkan E, Anak TA, Müfide K, et al. Synthesis and characterization of phosphorus-based flame retardant containing rigid polyurethane foam. J Therm Anal Calorim. 2022;147:4119–29.

    Article  Google Scholar 

  2. Acua P, Lin X, Calvo M, et al. Synergistic effect of expandable graphite and phenylphosphonic-aniline salt on flame retardancy of rigid polyurethane foam. Polym Degrad Stabil. 2020;179: 109274.

    Article  Google Scholar 

  3. Gang T, Lin Z, Zhang P, et al. Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. J Therm Anal Calorim. 2020;140(2):625–36.

    Article  Google Scholar 

  4. Ajorloo M, Fasihi M, Ohshima M, Taki K. How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller. Mater Des. 2019;181: 108068.

    Article  CAS  Google Scholar 

  5. Yang Y, Wang X, Cheng X, et al. Improving the flame retardant and antibacterial performance of polyester/cotton blend fabrics with organic-inorganic hybrid coating. Polym Degrad Stabil. 2022;200: 109944.

    Article  CAS  Google Scholar 

  6. Parida MR, Mohanty S, Biswal M, et al. Influence of aluminum trihydrate (ath) particle size on mechanical, thermal, flame retardancy and combustion behavior of polypropylene composites. J Therm Anal Calorim. 2023;148(3):807–19.

    Article  CAS  Google Scholar 

  7. Tawiah B, Yu B, Ullah S, et al. Flame retardant poly(lactic acid) biocomposites reinforced by recycled wool fibers – thermal and mechanical properties. Xpress Polym Lett. 2019;13:697–712.

    Article  CAS  Google Scholar 

  8. Pan Z, Wang B. Synergistic flame retardant effect of piperazine salt and ammonium polyphosphate as intumescent flame retardant system for polypropylene. J Appl Polym Sci. 2021;138:49813.

    Article  CAS  Google Scholar 

  9. Pan YQ, Guo ZH, Ran SY. Improved flame retardant of intumescent flame retardant flame-retarded high density polyethylene with fullerene decorated by iron compound. Express Polym Lett. 2019;13:835–43.

    Article  CAS  Google Scholar 

  10. Sun J, Li L, Li J. Effects of furan-phosphamide derivative on flame retardancy and crystallization behaviors of poly (lactic acid). Chem Eng J. 2019;369:150–60.

    Article  CAS  Google Scholar 

  11. Esra A, Akr AT, Müfide K, et al. Synthesis and characterization of phosphorus-based flame retardant containing rigid polyurethane foam. J Therm Anal Calorim. 2022;147:4119–29.

    Article  Google Scholar 

  12. Ai L, Chen S, Zeng J. Synergistic flame retardant effect of an intumescent flame retardant containing boron and magnesium hydroxide. ACS Omega. 2019;4:3314–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu Z, Chen L, Zhao B. A novel efficient halogen-free flame retardant system for polycarbonate. Polym Degrad Stabil. 2011;96:320–7.

    Article  CAS  Google Scholar 

  14. Tawiah B, Yu B, Fei B. Advances in flame retardant poly (lactic acid). Polymers. 2018;10:876.

    Article  PubMed  PubMed Central  Google Scholar 

  15. ZareKarizi F, Joharian M, Morsali A. Pillar-layered MOFs: functionality, interpenetration, flexibility and applications. J Mater Chem A. 2018;6:19288–329.

    Article  CAS  Google Scholar 

  16. Feng L, Han X, Su X. Metal-organic frameworks derived porous carbon coated SiO composite as superior anode material for lithium ion batteries. J Alloy Compd. 2018;765:512–9.

    Article  CAS  Google Scholar 

  17. Wang R, Chen Y, Liu Y, et al. Metal-organic frameworks derived zno@mof@pzs flame retardant for reducing fire hazards of polyurea nanocomposites. Polym Advan Technol. 2021;32:4700–9.

    Article  CAS  Google Scholar 

  18. Lu J, Wang S, Ding C. Metal organic frameworks derived CoSe2@ N-Doped-carbon-nanorods as highly efficient electrocatalysts for oxygen evolution reaction. J Alloy Compd. 2019;2019(778):134–40.

    Article  Google Scholar 

  19. Salestan SK, Pirzadeh K, Rahimpour A, et al. Poly (ether-block amide) thin-film membranes containing functionalized mil-101 MOFs for efficient separation of CO2/CH4. J Environ Chem Eng. 2021;9: 105820.

    Article  Google Scholar 

  20. Pan YT, Zhang Z, Yang R. The rise of MOFs and their derivatives for flame retardant polymeric materials: a critical review. Compos Part B Eng. 2020;199: 108265.

    Article  CAS  Google Scholar 

  21. Xu B, Xu W, Wang G. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym Advan Technol. 2018;29:1733–43.

    Article  CAS  Google Scholar 

  22. Hou Y, Hu W, Gui Z. Preparation of metal–organic frameworks and their application as flame retardants for polystyrene. Ind Eng Chem Res. 2017;56:2036–45.

    Article  CAS  Google Scholar 

  23. Hou Y. University of Science and Technology of China, 2019.

  24. Hou Y, Hu W, Gui Z. A novel Co (II)–based metal-organic framework with phosphorus-containing structure: build for enhancing fire safety of epoxy. Compos Sci Technol. 2017;152:231–42.

    Article  CAS  Google Scholar 

  25. Zhang G, Wu WH, Yao M, et al. Novel triazine-based metal-organic frameworks: synthesis and mulifunctional application of flame retardant, smoke suppression and toxic attenuation on EP. Mater Des. 2023;226: 111664.

    Article  CAS  Google Scholar 

  26. Song KP, Li XL, Pan YT, et al. The influence on flame retardant epoxy composites by a bird’s nest-like structure of Co-based isomers evolved from zeolitic imidazolate framework-67. Polym Degrad Stabil. 2023;211: 110318.

    Article  CAS  Google Scholar 

  27. Wan M, Shi CL, Qian XD, et al. Interface assembly of flower-like Ni-MOF functional MXene towards the fire safety of thermoplastic polyurethanes. Compos Part A-Appl S. 2022;163: 107187.

    Article  CAS  Google Scholar 

  28. Dong F, Wang Y, Wang S, et al. Flame-retarded polyurethane foam conferred by a bio-based nitrogen-phosphorus-containing flame retardant. React Funct Polym. 2021;168: 105057.

    Article  CAS  Google Scholar 

  29. Rao KS, Yehya F, Chaudhary AK. Thermal stability study of nitro-rich triazole derivatives using temperature dependent time resolved pulsed photoacoustic (PA) technique. J Anal Appl Pyrol. 2014;109:132–9.

    Article  CAS  Google Scholar 

  30. Zhao R, Xia W, Lin C, et al. A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction. Carbon. 2017;114:284–90.

    Article  CAS  Google Scholar 

  31. Hou Y, Hu W, Gui Z, et al. A novel Co(ii)-based metal-organic framework with phosphorus-containing structure: build for enhancing fire safety of epoxy. Compos Sci Technol. 2017;152:231–42.

    Article  CAS  Google Scholar 

  32. Wang SX, Zhao HB, Rao WH, et al. Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer. 2018;153:616–25.

    Article  CAS  Google Scholar 

  33. Xu W, Wang G, Xu J, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam. J Hazard Mater. 2019;379: 120819.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng J, Ma D, Li S, et al. Preparation of zeolitic imidazolate frameworks and their application as flame retardant and smoke suppression agent for rigid polyurethane foams. Polymers. 2020;12(2):347.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is a project funded by the National Natural Science Foundation of China (No. 51806113), Shandong Provincial Major Science and Technology Innovation Program (2022CXGC020401), Natural Science Foundation of Shandong Province (ZR2023QE114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaji Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Lin, W., Liu, Y. et al. Preparation of zeolitic imidazolate frameworks with high nitrogen as an effective flame retardant to enhance flame retardancy of rigid polyurethane foam. J Therm Anal Calorim 148, 9511–9518 (2023). https://doi.org/10.1007/s10973-023-12348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12348-1

Keywords

Navigation