Skip to main content
Log in

Numerical study on discharging process of a latent heat triple-tube heat exchanger in the presence of a central plate using the enthalpy–porosity approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present numerical analysis, the influences of incorporating a central plate into the enclosure of a phase change material (PCM) on the solidification enhancement of a latent heat energy storage system are explored numerically. This study focuses mainly on determining the role of the central plate in enhancing the PCM discharging process. To evaluate the capability of the central plate in enhancing the PCM phase change process, various scenarios are considered in the present study. Firstly, the solidification performances of the states with no fin as well as uniform fins without the inserted central plate are compared with the discharging capability of the case equipped with the central plate. The liquid fraction as well as the PCM temperature contours are compared to assess the effectiveness of the central plate location on the PCM discharging mode, secondly. After the case with the best thermal performance is determined, the influences of adding the uniform fins and central plate into the PCM enclosure are investigated simultaneously. Then, the impacts of various configurations, namely the inline and staggered scenarios, on the PCM discharging phenomenon are analyzed in the central plate presence. As the last step, the effects of various PCMs on discharging mode of the thermal unit are studied to evaluate the PCM role in enhancing the discharging process. The numerical results reveal that the influences of the central plate incorporation on improving the solidification performance are greater than that of the melting case in the absence of the uniform fins. Time saving percentages of case VII (case with the central plate and uniform fins) compared to the no-fin case are 68.91, 71.02, and 74.84% for RT-35, RT-35HC, and n-eicosane, respectively. Furthermore, the case with RT-35HC as the PCM experienced the highest discharging rate compared to other cases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

GA:

Genetic algorithm

HTF:

Heat transfer fluid

LHTESS:

Latent heat thermal energy storage system

PCM:

Phase change material

LTES:

Latent thermal energy storage

TES:

Thermal energy storage

A m :

Mushy zone constant

C p (JKg 1 K 1):

Thermal energy storage

\(d\) (mm):

Interior fin distance from the bottom plate

\(g\) (ms 2):

Gravity

h (Jkg 1):

Sensible enthalpy

h ref (Jkg 1):

Sensible enthalpy at reference temperature

H (Jkg 1):

Total enthalpy

\(k\) (Wm 1 K 1):

Thermal conductivity

\({L}_{\mathrm{f}}\) (Jkg 1):

Latent heat of fusion

\(m\) (kg):

Mass of PCM

\(P\) (Pa):

Pressure

\(Q\) (kJ):

Thermal energy storage capacity

\(\dot{Q}\) (kJs 1):

Heat storage rate

t :

Time (s)

\({t}_{\mathrm{s}}\) (s):

Solidification time

\(T\) (K):

Temperature

TDER:

Time-dependent enhancement ratio

\({T}_{\mathrm{e}}\)(K):

End temperature

\({T}_{\mathrm{i}}\)(K):

Initial temperature

\({T}_{\mathrm{Liquidus}}\)(K):

Liquidus temperature

\({T}_{\mathrm{ref}}\)(K):

Reference temperature

\({T}_{\mathrm{Solidus}}\)(K):

Solidus temperature

\(\overrightarrow{V}\) (m/s):

Velocity vector

\(\beta \) (K 1):

Thermal Expansion coefficient

\(\lambda \) :

Liquid fraction

\(\mu \) (kgm 1 s 1):

Viscosity

\(\rho \) (kgm 3):

Density

\({\rho }_{\mathrm{ref}}\) (kgm 3):

Density at reference temperature

\(\Delta H\) (Jkg 1):

PCM Latent heat

l :

Liquid

ref:

Reference

s :

Solid

References

  1. Martins F, Felgueiras C, Smitkova M, Caetano N. Analysis of fossil fuel energy consumption and environmental impacts in European Countries. Energies. 2019. https://doi.org/10.3390/en12060964.

    Article  Google Scholar 

  2. Mozafari M, Lee A, Cheng S. A novel dual-PCM configuration to improve simultaneous energy storage and recovery in triplex-tube heat exchanger. Int J Heat Mass Transf. 2022;186:122420. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122420.

    Article  Google Scholar 

  3. Senthil R, Punniakodi BMS, Balasubramanian D, Nguyen XP, Hoang AT, Nguyen VN. Numerical investigation on melting and energy storage density enhancement of phase change material in a horizontal cylindrical container. Int J Energy Res. 2022;46:19138–58. https://doi.org/10.1002/er.8228.

    Article  CAS  Google Scholar 

  4. Luo J, Zou D, Wang Y, Wang S, Huang L. Battery thermal management systems (BTMs) based on phase change material (PCM): a comprehensive review. Chem Eng J. 2022;430:132741. https://doi.org/10.1016/j.cej.2021.132741.

    Article  CAS  Google Scholar 

  5. Yi F, Jiaqiang E, Zhang B, Zuo H, Wei K, Chen J, Zhu H, Zhu H, Deng Y. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method. Renew Energy. 2022;181:472–89. https://doi.org/10.1016/j.renene.2021.09.073.

    Article  CAS  Google Scholar 

  6. Subramanian M, Hoang AT, Kalidasan B, Nižetić S, Solomon JM, Balasubramanian D, Subramaniyan C, Thenmozhi G, Metghalchi H, Nguyen XP. A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles. J Clean Prod. 2021;322:129079. https://doi.org/10.1016/j.jclepro.2021.129079.

    Article  CAS  Google Scholar 

  7. Mozafari M, Lee A, Mohammadpour J. Thermal management of single and multiple PCMs based heat sinks for electronics cooling. Therm Sci Eng Prog. 2021;23:100919. https://doi.org/10.1016/j.tsep.2021.100919.

    Article  CAS  Google Scholar 

  8. Mozafari M, Lee A, Cheng S. Improvement on the cyclic thermal shock resistance of the electronics heat sinks using two-objective optimization. J Energy Storage. 2022;46:103923. https://doi.org/10.1016/j.est.2021.103923.

    Article  Google Scholar 

  9. Velmurugan K, Karthikeyan V, Sharma K, Korukonda TB, Kannan V, Balasubramanian D, Wongwuttanasatian T. Contactless phase change material based photovoltaic module cooling: a statistical approach by clustering and correlation algorithm. J Energy Storage. 2022;53:105139. https://doi.org/10.1016/j.est.2022.105139.

    Article  Google Scholar 

  10. Faizan M, Ahmed R, Ali HM. A critical review on thermophysical and electrochemical properties of Ionanofluids (nanoparticles dispersed in ionic liquids) and their applications. J Taiwan Inst Chem Eng. 2021;124:391–423. https://doi.org/10.1016/j.jtice.2021.02.004.

    Article  CAS  Google Scholar 

  11. Mourad A, Aissa A, Mebarek-Oudina F, Jamshed W, Ahmed W, Ali HM, Rashad AM. Galerkin finite element analysis of thermal aspects of Fe3O4-MWCNT/water hybrid nanofluid filled in wavy enclosure with uniform magnetic field effect. Int Commun Heat Mass Transf. 2021;126:105461. https://doi.org/10.1016/j.icheatmasstransfer.2021.105461.

    Article  CAS  Google Scholar 

  12. Saleem M, Algahtani A, Rehman SU, Javed MS, Irshad K, Ali HM, Malik MZ, Ali A, Tirth V, Islam S. Solution processed Zn1−x−ySmxCuyO nanorod arrays for dye sensitized solar cells. Nanomaterials. 2021. https://doi.org/10.3390/nano11071710.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ali A, Al-Sulaiman FA, Al-Duais INA, Irshad K, Malik MZ, Shafiullah M, Zahir MH, Ali HM, Malik SA. Renewable portfolio standard development assessment in the Kingdom of Saudi Arabia from the perspective of policy networks theory. Processes. 2021. https://doi.org/10.3390/pr9071123.

    Article  Google Scholar 

  14. Jeon J, Lee J-H, Seo J, Jeong S-G, Kim S. Erratum to: Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2014;116:539. https://doi.org/10.1007/s10973-012-2408-1.

    Article  CAS  Google Scholar 

  15. Refahi A, Rostami A, Amani M. Energy analysis of the building integrated with a double PCM wallboard system in various climate regions of Iran. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-11999-4.

    Article  Google Scholar 

  16. Dileep K, Arun KR, Dishnu D, Srinivas M, Jayaraj S. Numerical studies on the effect of location and number of containers on the phase transition of PCM-integrated evacuated tube solar water heater. J Therm Anal Calorim. 2021;143:737–49. https://doi.org/10.1007/s10973-019-09151-2.

    Article  CAS  Google Scholar 

  17. Krupakaran RL, Palampalle B, Balasubramanian D, Reddy GV (2020) Influence of Titanium Oxide Nanoparticle on Solar Desalination with Phase Change Material. https://doi.org/10.4271/2020-28-0464

  18. Alkan C, Sarı A, Karaipekli A, Uzun O. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2009;93:143–7. https://doi.org/10.1016/j.solmat.2008.09.009.

    Article  CAS  Google Scholar 

  19. Zauner C, Hengstberger F, Etzel M, Lager D, Hofmann R, Walter H. Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM. Appl Energy. 2016;179:237–46. https://doi.org/10.1016/j.apenergy.2016.06.138.

    Article  CAS  Google Scholar 

  20. Sharifi N, Bergman TL, Allen MJ, Faghri A. Melting and solidification enhancement using a combined heat pipe, foil approach. Int J Heat Mass Transf. 2014;78:930–41. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.054.

    Article  Google Scholar 

  21. Mahdi JM, Nsofor EC. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Appl Energy. 2018;211:975–86. https://doi.org/10.1016/j.apenergy.2017.11.082.

    Article  CAS  Google Scholar 

  22. Nada SA, El-Nagar DH, Hussein HMS. Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles. Energy Convers Manag. 2018;166:735–43. https://doi.org/10.1016/j.enconman.2018.04.035.

    Article  CAS  Google Scholar 

  23. Nada SA, Alshaer WG. Experimental investigation of thermal conductivity enhancement of carbon foam saturated with PCM and PCM/MWCNTs composite for energy storage systems. Heat Mass Transf. 2019;55:2667–77. https://doi.org/10.1007/s00231-019-02610-4.

    Article  CAS  Google Scholar 

  24. Kandelousi MS. Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus. 2014;129:248. https://doi.org/10.1140/epjp/i2014-14248-2.

    Article  CAS  Google Scholar 

  25. Rashid FL, Rahbari A, Ibrahem RK, Talebizadehsardari P, Basem A, Kaood A, Mohammed HI, Abbas MH, Al-Obaidi MA. Review of solidification and melting performance of phase change materials in the presence of magnetic field, rotation, tilt angle, and vibration. J Energy Storage. 2023;67:107501. https://doi.org/10.1016/j.est.2023.107501.

    Article  Google Scholar 

  26. Gürtürk M, Kok B. A new approach in the design of heat transfer fin for melting and solidification of PCM. Int J Heat Mass Transf. 2020;153:119671. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119671.

    Article  CAS  Google Scholar 

  27. Nie C, Deng S, Liu J. Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit. J Energy Storage. 2020;29:101319. https://doi.org/10.1016/j.est.2020.101319.

    Article  Google Scholar 

  28. Oliveski RDC, de Quadro Tacques Filho A, Schröer IA. Melting and solidification in thermal storage: influence of fin aspect ratio and positioning in a full charging and discharging cycle. J Energy Storage. 2022;50:104303. https://doi.org/10.1016/j.est.2022.104303.

    Article  Google Scholar 

  29. Shukla A, Kant K, Biwole PH, Pitchumani R, Sharma A. Melting and solidification of a phase change material with constructal tree-shaped fins for thermal energy storage. J Energy Storage. 2022;53:105158. https://doi.org/10.1016/j.est.2022.105158.

    Article  Google Scholar 

  30. Iranmanesh A. Intensifying the melting process of a triple-tube latent heat energy storage unit via inserting a middle plate into the phase change material container. J Energy Storage. 2022;56:105982. https://doi.org/10.1016/j.est.2022.105982.

    Article  Google Scholar 

  31. Zheng Z-J, Cai X, Yang C, Xu Y. Improving the solidification performance of a latent heat thermal energy storage unit using arrow-shaped fins obtained by an innovative fast optimization algorithm. Renew Energy. 2022;195:566–77. https://doi.org/10.1016/j.renene.2022.06.031.

    Article  Google Scholar 

  32. Sarani I, Payan S, Nada SA, Payan A. Numerical investigation of an innovative discontinuous distribution of fins for solidification rate enhancement in PCM with and without nanoparticles. Appl Therm Eng. 2020;176:115017. https://doi.org/10.1016/j.applthermaleng.2020.115017.

    Article  Google Scholar 

  33. Alizadeh M, Nabizadeh A, Fazlollahtabar A, Ganji DD. An optimization study of solidification procedure in a wavy- wall storage unit considering the impacts of NEPCM and curved fin. Int Commun Heat Mass Transf. 2021;124:105249. https://doi.org/10.1016/j.icheatmasstransfer.2021.105249.

    Article  CAS  Google Scholar 

  34. Mozafari M, Hooman K, Lee A, Cheng S. Numerical study of a dual-PCM thermal energy storage unit with an optimized low-volume fin structure. Appl Therm Eng. 2022;215:119026. https://doi.org/10.1016/j.applthermaleng.2022.119026.

    Article  CAS  Google Scholar 

  35. Ravi R, Rajasekaran K. Experimental study of solidification of paraffin wax in solar based triple concentric tube thermal energy storage system. Therm Sci. 2018;22:973–8.

    Article  Google Scholar 

  36. GmbH RT, RT35 data sheet, (n.d.).

  37. Benbrika M, Teggar M, Benbelhout M, Ismail KAR. Numerical study of n-eicosane melting inside a horizontal cylinder for different loading rates. J Homepage Http//Iieta Org/Journals/Ijht. 2020;38:125–30.

    Google Scholar 

  38. Arshad A, Jabbal M, Faraji H, Talebizadehsardari P, Bashir MA, Yan Y. Thermal performance of a phase change material-based heat sink in presence of nanoparticles and metal-foam to enhance cooling performance of electronics. J Energy Storage. 2022;48:103882. https://doi.org/10.1016/j.est.2021.103882.

    Article  Google Scholar 

  39. Talebizadeh Sardari P, Walker GS, Gillott M, Grant D, Giddings D. Numerical modelling of phase change material melting process embedded in porous media: Effect of heat storage size. Proc Inst Mech Eng Part A J Power Energy. 2019;234:365–83. https://doi.org/10.1177/0957650919862974.

    Article  Google Scholar 

  40. Mahdi JM, Nsofor EC. Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Appl Energy. 2017;191:22–34. https://doi.org/10.1016/j.apenergy.2016.11.036.

    Article  CAS  Google Scholar 

  41. Shahsavar A, Khosravi J, Mohammed HI, Talebizadehsardari P. Performance evaluation of melting/solidification mechanism in a variable wave-length wavy channel double-tube latent heat storage system. J Energy Storage. 2020;27:101063. https://doi.org/10.1016/j.est.2019.101063.

    Article  Google Scholar 

  42. Shahsavar A, Shaham A, Talebizadehsardari P. Wavy channels triple-tube LHS unit with sinusoidal variable wavelength in charging/discharging mechanism. Int Commun Heat Mass Transf. 2019;107:93–105. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.012.

    Article  Google Scholar 

  43. El Idi MM, Karkri M. Heating and cooling conditions effects on the kinetic of phase change of PCM embedded in metal foam. Case Stud Therm Eng. 2020;21:100716. https://doi.org/10.1016/j.csite.2020.100716.

    Article  Google Scholar 

  44. Esapour M, Hamzehnezhad A, Rabienataj Darzi AA, Jourabian M. Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system. Energy Convers Manag. 2018;171:398–410. https://doi.org/10.1016/j.enconman.2018.05.086.

    Article  CAS  Google Scholar 

  45. Shahsavar A, Majidzadeh AH, Mahani RB, Talebizadehsardari P. Entropy and thermal performance analysis of PCM melting and solidification mechanisms in a wavy channel triplex-tube heat exchanger. Renew Energy. 2021;165:52–72. https://doi.org/10.1016/j.renene.2020.11.074.

    Article  Google Scholar 

  46. Chiew J, Chin CS, Toh WD, Gao Z, Jia J. Thermal state-of-expansion or melting of phase change material based heat sink for underwater battery power system. J Energy Storage. 2019;26:100956. https://doi.org/10.1016/j.est.2019.100956.

    Article  Google Scholar 

  47. Hasan A, Sarwar J, Alnoman H, Abdelbaqi S. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Sol Energy. 2017;146:417–29. https://doi.org/10.1016/j.solener.2017.01.070.

    Article  Google Scholar 

  48. Elmozughi AF, Solomon L, Oztekin A, Neti S. Encapsulated phase change material for high temperature thermal energy storage–Heat transfer analysis. Int J Heat Mass Transf. 2014;78:1135–44. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.087.

    Article  CAS  Google Scholar 

  49. Wang P, Wang X, Huang Y, Li C, Peng Z, Ding Y. Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs). Appl Energy. 2015;142:328–36. https://doi.org/10.1016/j.apenergy.2014.12.050.

    Article  Google Scholar 

  50. Ye W-B, Zhu D-S, Wang N. Numerical simulation on phase-change thermal storage/release in a plate-fin unit. Appl Therm Eng. 2011;31:3871–84. https://doi.org/10.1016/j.applthermaleng.2011.07.035.

    Article  CAS  Google Scholar 

  51. Mahdi JM, Nsofor EC. Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination. Int J Heat Mass Transf. 2017;109:417–27. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.016.

    Article  CAS  Google Scholar 

  52. Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build. 2014;68:33–41. https://doi.org/10.1016/j.enbuild.2013.09.007.

    Article  Google Scholar 

  53. Mat S, Al-Abidi AA, Sopian K, Sulaiman MY, Mohammad AT. Enhance heat transfer for PCM melting in triplex tube with internal–external fins. Energy Convers Manag. 2013;74:223–36. https://doi.org/10.1016/j.enconman.2013.05.003.

    Article  CAS  Google Scholar 

  54. Shahsavar A, Ali HM, Mahani RB, Talebizadehsardari P. Numerical study of melting and solidification in a wavy double-pipe latent heat thermal energy storage system. J Therm Anal Calorim. 2020;141:1785–99. https://doi.org/10.1007/s10973-020-09864-9.

    Article  CAS  Google Scholar 

  55. Chen K, Mohammed HI, Mahdi JM, Rahbari A, Cairns A, Talebizadehsardari P. Effects of non-uniform fin arrangement and size on the thermal response of a vertical latent heat triple-tube heat exchanger. J Energy Storage. 2022;45:103723. https://doi.org/10.1016/j.est.2021.103723.

    Article  Google Scholar 

  56. Sun X, Mohammed HI, Tiji ME, Mahdi JM, Majdi HS, Wang Z, Talebizadehsardari P, Yaïci W. Investigation of heat transfer enhancement in a triple tube latent heat storage system using circular fins with inline and staggered arrangements. Nanomater. 2021. https://doi.org/10.3390/nano11102647.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aghil Iranmanesh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranmanesh, A. Numerical study on discharging process of a latent heat triple-tube heat exchanger in the presence of a central plate using the enthalpy–porosity approach. J Therm Anal Calorim 148, 9673–9699 (2023). https://doi.org/10.1007/s10973-023-12341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12341-8

Keywords

Navigation