Skip to main content
Log in

Microcapsule preparation of melamine and orange peel charcoal encapsulated by sodium alginate and its effect on combustion performance of epoxy resins

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bio-based flame retardant is highly desirable given today’s increasing environmentally friendly demand. In this article, a bio-based microencapsulated flame retardant SA@(MA/OPC) was prepared. Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS) analysis confirmed the effective encapsulation of melamine (MA) and orange peel charcoal (OPC) in sodium alginate (SA). EP/SA@(MA/OPC) composites were prepared by adding SA@(MA/OPC) into epoxy resin (EP). For comparison, EP/(SA/MA/OPC) composites were also prepared by adding unmicroencapsulated mixture SA/MA/OPC into epoxy resin (EP). Thermal stability and combustion behaviors of EP/SA@(MA/OPC) and EP/(SA/MA/OPC) were characterized by thermogravimetric analysis/infrared spectrometry (TG–FTIR), limited oxygen index (LOI), vertical burning test (UL-94), cone calorimeter test and SEM, respectively. The results showed that the peak heat release rate (PHRR), total heat release (THR) and total smoke production (TSP) of EP/SA@(MA/OPC) decreased by 74.2%, 22.0% and 24.7%, respectively, compared to pure EP. The PHRR, THR and TSP of EP/(SA/MA/OPC) were higher than that of EP/SA@(MA/OPC), which indicated that microencapsulated SA@(MA/OPC) had a better flame retardancy than blending SA, MA and OPC with EP. Finally, the flame-retardant mechanism of EP/SA@(MA/OPC) was presented. This work provides a new attempt to build EP composites with bio-based flame retardants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jin FL, Li X, Park SJ. Synthesis and application of epoxy resins: a review. J Ind Eng Chem. 2015;29:1–11.

    Article  CAS  Google Scholar 

  2. Gu H, Guo J, He Q, Tadakamalla S, Zhang X, Yan X, et al. Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res. 2013;52(23):7718–28.

    Article  CAS  Google Scholar 

  3. Miao J, Yuan L, Guan Q, Liang G, Gu A. Biobased heat resistant epoxy resin with extremely high biomass content from 2,5-furandicarboxylic acid and eugenol. ACS Sustain Chem Eng. 2017;5(8):7003–11.

    Article  CAS  Google Scholar 

  4. Liu LB, Xu Y, Xu MJ, Li ZQ, Hu YM, Li B. Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins. Compos B. 2019;167:422–33.

    Article  CAS  Google Scholar 

  5. You GY, Cheng ZQ, Tang YY, He HW. Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate-triazine-based compound as flame retardant in epoxy resin. Ind Eng Chem Res. 2015;54(30):7309–19.

    Article  CAS  Google Scholar 

  6. Salasinska K, Celiński M, Mizera K, Kozikowski P, Leszczyński MK, Gajek A. Synergistic effect between histidine phosphate complex and hazelnut shell for flammability reduction of low-smoke emission epoxy resin. Polym Degrad Stab. 2020;181:109292.

    Article  CAS  Google Scholar 

  7. Wu K, Hu Y, Song L, Lu HD, Wang ZZ. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind Eng Chem Res. 2009;48(6):3150–7.

    Article  CAS  Google Scholar 

  8. Huo SQ, Song PA, Yu B, Ran SY, Chevali VS, Liu L, et al. Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Prog Polym Sci. 2021;114:101366.

    Article  CAS  Google Scholar 

  9. Alongi J, Han ZD, Bourbigot S. Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci. 2015;51:28–73.

    Article  CAS  Google Scholar 

  10. Zhang F, Wang Y, Li SX, Zhang J. Influence of thermophysical properties on burning behavior of intumescent fire-retardant materials. J Therm Anal Calorim. 2012;113(2):803–10.

    Article  Google Scholar 

  11. Neisius NM, Lutz M, Rentsch D, Hemberger P, Gaan S. Synthesis of DOPO-based phosphonamidates and their thermal properties. Ind Eng Chem Res. 2014;53(8):2889–96.

    Article  CAS  Google Scholar 

  12. Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR. Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew Chem Int Ed. 2018;57(33):10450–67.

    Article  CAS  Google Scholar 

  13. Yew MC, Sulong NHR, Yew MK, Amalina MA, Johan MR. Fire propagation performance of intumescent fire protective coatings using eggshells as a novel biofiller. Sci World J. 2014.

  14. Chen S, Wu FY, Hu Y, Lin SC, Yu CC, Zhu F, et al. A fully bio-based intumescent flame retardant for poly(butylene succinate). Mater Chem Phys. 2020;252:123222.

    Article  CAS  Google Scholar 

  15. Chen PF, Zhang F, Li SX, Cheng YF. Smoke suppression properties of epoxy crosslinked structure and intumescent fire retardant in epoxy-based intumescent fire-retardant coating. J Appl Polym Sci. 2016;133(36).

  16. Gérard C, Fontaine G, Bourbigot S. Synergistic and antagonistic effects in flame retardancy of an intumescent epoxy resin. Polym Adv Technol. 2011;22(7):1085–90.

    Article  Google Scholar 

  17. Yang L, Chen H, Jia SK, Lu X, Huang JT, Yu XX, et al. Influences of ethylene-butylacrylate-glycidyl methacrylate on morphology and mechanical properties of poly(butylene terephthalate)/polyolefin elastomer blends. J Appl Polym Sci. 2014;131(16).

  18. Wang BB, Qian XD, Shi YQ, Yu B, Hong NN, Song L, et al. Cyclodextrin microencapsulated ammonium polyphosphate: preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Compos B. 2015;69:22–30.

    Article  CAS  Google Scholar 

  19. Thanh TTN, Decsov KE, Bocz K, Marosi G, Szolnoki B. Development of intumescent flame retardant for polypropylene: bio-epoxy resin microencapsulated ammonium-polyphosphate. Period Polytech-Chem. 2022;66(2):313–24.

    Article  CAS  Google Scholar 

  20. Fanelli F, Mastrangelo AM, Fracassi F. Aerosol-assisted atmospheric cold plasma deposition and characterization of superhydrophobic organic-inorganic nanocomposite thin films. Langmuir. 2014;30(3):857–65.

    Article  CAS  PubMed  Google Scholar 

  21. Xing YL, Li YQ, Lin ZJ, Ma X, Qu H, Fan RL. Synthesis and characterization of bio-based intumescent flame retardant and its application in polyurethane. Fire Mater. 2020;44(6):814–24.

    Article  CAS  Google Scholar 

  22. Sienkiewicz A, Czub P. Flame retardancy of biobased composites-research development. Materials. 2020;13(22):5253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hobbs CE. Recent advances in bio-based flame retardant additives for synthetic polymeric materials. Polymers-Basel. 2019;11(2):224.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chang BP, Thakur S, Mohanty AK, Misra M. Novel sustainable biobased flame retardant from functionalized vegetable oil for enhanced flame retardancy of engineering plastic. Sci Rep. 2019;9:15971.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ye GF, Huo SQ, Wang C, Shi Q, Liu ZT, Wang H. One-step and green synthesis of a bio-based high-efficiency flame retardant for poly (lactic acid). Polym Degrad Stab. 2021;192:109696.

    Article  CAS  Google Scholar 

  26. Wang D, Wang Y, Li T, Zhang S, Ma P, Shi D, et al. A bio-based flame-retardant starch based on phytic acid. ACS Sustain Chem Eng. 2020;8(27):10265–74.

    Article  CAS  Google Scholar 

  27. Yang HT, Yu B, Xu XD, Bourbigot S, Wang H, Song PA. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020;22(7):2129–61.

    Article  CAS  Google Scholar 

  28. Jiang D, Pan MZ, Cai X, Zhao YT. Flame retardancy of rice straw-polyethylene composites affected by in situ polymerization of ammonium polyphosphate/silica. Compos A. 2018;109:1–9.

    Article  CAS  Google Scholar 

  29. Hidalgo J, Fernández-Blázquez JP, Jiménez-Morales A, Barriere T, Gelin JC, Torralba JM. Effect of the particle size and solids volume fraction on the thermal degradation behaviour of Invar 36 feedstocks. Polym Degrad Stab. 2013;98(12):2546–55.

    Article  CAS  Google Scholar 

  30. Shi XH, Chen L, Liu BW, Long JW, Xu YJ, Wang YZ. Carbon fibers decorated by polyelectrolyte complexes toward their epoxy resin composites with high fire safety. Chin J Polym Sci. 2018;36(12):1375–84.

    Article  CAS  Google Scholar 

  31. Battegazzore D, Bocchini S, Alongi J, Frache A. Rice husk as bio-source of silica: preparation and characterization of PLA-silica bio-composites. RSC Adv. 2014;4(97):54703–12.

    Article  CAS  Google Scholar 

  32. Nabipour H, Wang X, Song L, Hu Y. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohydr Polym. 2020;246:116641.

    Article  CAS  PubMed  Google Scholar 

  33. Liu C, Li P, Xu YJ, Liu Y, Zhu P. Nickel alginate-enhanced fire safety of aluminum diethylphosphinate on epoxy resin. J Appl Polym Sci. 2023;140(9):e53552.

    Article  CAS  Google Scholar 

  34. Liu C, Li P, Xu YJ, Liu Y, Zhu P, Wang YZ. Epoxy/iron alginate composites with improved fire resistance, smoke suppression and mechanical properties. J Mater Sci. 2022;57(4):2567–83.

    Article  CAS  Google Scholar 

  35. Jiang WJ, Zhou G, Wang CM, Xue YF, Niu CX. Synthesis and self-healing properties of composite microcapsule based on sodium alginate/melamine-phenol-formaldehyde resin. Constr Build Mater. 2021;271:121541.

    Article  CAS  Google Scholar 

  36. Vincent T, Vincent C, Dumazert L, Otazaghine B, Sonnier R, Guibal E. Fire behavior of innovative alginate foams. Carbohydr Polym. 2020;250:116910.

    Article  CAS  PubMed  Google Scholar 

  37. Meng H, Nie CY, Li WL, Duan XG, Lai B, Ao ZM, et al. Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: epicarp and mesocarp of citrus peels as examples. J Hazard Mater. 2020;399:123043.

    Article  CAS  PubMed  Google Scholar 

  38. Xin Z, Sun SQ, Huang QH. Identification of pericarpium citri reticulatae from different years using ftir. Spectrosc Spect Anal. 2008;28(1):72–4.

    Google Scholar 

  39. Sun ZJ, Wong R, Liu YF, Yu M, Liu JX, Spence D, et al. Melamine-graphene epoxy nanocomposite based die attach films for advanced 3D semiconductor packaging applications. Nanoscale. 2022;14(40):15193–202.

    Article  CAS  PubMed  Google Scholar 

  40. Liu C, Li P, Xu YJ, Liu Y, Zhu P. Synergistic effects of iron alginate on improving the fire safety and mechanical properties of epoxy resin/ammonium polyphosphate composites. Macromol Mater Eng. 2022;308(3):2200516.

    Article  Google Scholar 

  41. Luo H, Zhou F, Yang YY, Cao XL, Cai XF. Synergistic flame-retardant behavior and mechanism of tris(3-nitrophenyl) phosphine and DOPO in epoxy resins. J Therm Anal Calorim. 2018;132(1):483–91.

    Article  CAS  Google Scholar 

  42. Mohtadizadeh F, Zohuriaan-Mehr MJ, Hadavand BS, Dehghan A. Tetra-functional epoxy-acrylate as crosslinker for UV curable resins: synthesis, spectral, and thermo-mechanical studies. Prog Org Coat. 2015;89:231–9.

    Article  CAS  Google Scholar 

  43. Shao ZB, Cui J, Li XL, Palencia JLD, Wang DY. Chemically inorganic modified ammonium polyphosphate as eco-friendly flame retardant and its high fire safety for epoxy resin. Compos Commun. 2021;28:100959.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21975138).

Author information

Authors and Affiliations

Authors

Contributions

JR was involved in investigation, methodology, formal analysis and writing—original draft; FZ participated in supervision, resources, writing—reviewing and editing, formal analysis and funding acquisition; FJ, YB, JY, XL and SL contributed to investigation, software and validation; and YC were responsible for methodology and resources.

Corresponding author

Correspondence to Feng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Jin, F., Bao, Y. et al. Microcapsule preparation of melamine and orange peel charcoal encapsulated by sodium alginate and its effect on combustion performance of epoxy resins. J Therm Anal Calorim 148, 9489–9500 (2023). https://doi.org/10.1007/s10973-023-12338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12338-3

Keywords

Navigation