Skip to main content
Log in

Effect of waste glass content on resistance of geopolymer binders to sulfuric acid attack

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Geopolymers, known for their enhanced resistance to aggressive environment, are the subject of a new study to further increase their resistance by incorporating various raw materials. This research investigates the influence of waste glass content on the properties of alkali-activated binders exposed to an aggressive environment. The waste glass, replacing slag and metakaolin, was added in varying amounts ranging from 0 to 30 mass% . Sodium water glass, in the mass ratio of 4:5 to the binder, was used as the alkaline activator. The resistance to acid attack was assessed by immersing mortars in a sulfuric acid solution. The samples underwent analysis for appearance, mass and longitudinal change, compressive strength, and loss of alkalinity. Phase composition and microstructure were analysed using X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy techniques. Acid and water leachate was analysed by inductively coupled plasma mass spectrometry. The findings of the study revealed that incorporating waste glass content up to 20 mass% reduced porosity and affected the formation of gypsum. Gypsum results from the reaction between the binder and sulfuric acid and contributes to the surface deterioration of the specimens. Consequently, this research demonstrates that waste glass incorporation in the mix design can enhance the resistance of geopolymers to sulfuric acid, thus extending the service life of concrete structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Firdous R, Stephan D, Djobo JNY. Natural pozzolan based geopolymers: a review on mechanical, microstructural and durability characteristics. Constr Build Mater. 2018;190:1251–63. https://doi.org/10.1016/j.conbuildmat.2018.09.191.

    Article  CAS  Google Scholar 

  2. Zhang Y, Gu L, Li W, Zhang Q. Effect of acid rain on economic loss of concrete structures in Hangzhou. China Int J Low-Carbon Technol. 2019;14(2):89–94.

    Article  CAS  Google Scholar 

  3. Zhang G, Liu D, He X, Yu D, Pu M. Acid rain in Jiangsu province, eastern China: tempo-spatial variations features and analysis. Atmos Pollut Res. 2017;8(6):1031–43. https://doi.org/10.1016/j.apr.2017.02.001.

    Article  CAS  Google Scholar 

  4. Aiken TA, Kwasny J, Sha W, Soutsos MN. Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cem Concr Res. 2018;111(June):23–40. https://doi.org/10.1016/j.cemconres.2018.06.011.

    Article  CAS  Google Scholar 

  5. Aiken TA, Gu L, Kwasny J, Huseien GF, McPolin D, Sha W. Acid resistance of alkali-activated binders: a review of performance, mechanisms of deterioration and testing procedures. Constr Build Mater. 2022. https://doi.org/10.1016/j.conbuildmat.2022.128057.

    Article  Google Scholar 

  6. Gu L, Bennett T, Visintin P. Sulphuric acid exposure of conventional concrete and alkali-activated concrete: assessment of test methodologies. Constr Build Mater. 2019;197:681–92. https://doi.org/10.1016/j.conbuildmat.2018.11.166.

    Article  CAS  Google Scholar 

  7. Matalkah F, Salem T, Soroushian P. Acid resistance and corrosion protection potential of concrete prepared with alkali aluminosilicate cement. J Build Eng. 2018;20(July):705–11. https://doi.org/10.1016/j.jobe.2018.08.001.

    Article  Google Scholar 

  8. Tome S, Nana A, Kaze CR, Djobo JNY, Alomayri T, Kamseu E, Etoh MA, Etame J, Kumar S. Resistance of alkali-activated blended volcanic Ash-MSWI-FA mortar in sulpuric acid and artificial seawater. SILICON. 2021;14:2687–94. https://doi.org/10.1007/s12633-021-01055-x.

    Article  CAS  Google Scholar 

  9. Kaze CR, Tome S, Lecomte-Nana GL, Adesina A, Essaedi H, Das SK, Alomayri T, Kamseu E, Melo UC. Development of alkali-activated composites from calcined iron-rich laterite soil. Materialia. 2021;15:101032. https://doi.org/10.1016/j.mtla.2021.101032.

    Article  CAS  Google Scholar 

  10. Bernal SA, Rodríguez ED, Mejía R, Gutiérrez D. Performance of alkali-activated slag mortars exposed to acids. J Sustain Cem-Based Mater. 2012;1(3):138–51. https://doi.org/10.1080/21650373.2012.747235.

    Article  CAS  Google Scholar 

  11. Khan MNN, Kuri JC, Sarker PK. Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars. J Build Eng. 2021;34:101934. https://doi.org/10.1016/j.jobe.2020.101934.

    Article  Google Scholar 

  12. Zhang W, Yao X, Yang T, Liu C, Zhang Z. Increasing mechanical strength and acid resistance of geopolymers by incorporating different siliceous materials. Constr Build Mater. 2018;175:411–21. https://doi.org/10.1016/j.conbuildmat.2018.03.195.

    Article  CAS  Google Scholar 

  13. Aliques-Granero J, Tognonvi TM, Tagnit-Hamou A. Durability test methods and their application to AAMs: case of sulfuric-acid resistance. Mater Struct Constr. 2017;50(1):1–14.

    Article  CAS  Google Scholar 

  14. Lee NK, Lee HK. Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cem Concr Compos. 2016;72:168–79. https://doi.org/10.1016/j.cemconcomp.2016.06.004.

    Article  CAS  Google Scholar 

  15. Kwasny J, Aiken TA, Soutsos MN, McIntosh JA, Cleland DJ. Sulfate and acid resistance of lithomarge-based geopolymer mortars. Constr Build Mater. 2018;166:537–53.

    Article  CAS  Google Scholar 

  16. Elyamany HE, Elmoaty AEMA, Diab ARA. Sulphuric acid resistance of slag geopolymer concrete modified with fly ash and silica fume. Iran J Sci Technol Trans Civ Eng. 2020. https://doi.org/10.1007/s40996-020-00515-5.

    Article  Google Scholar 

  17. Khan MNN, Kuri JC, Sarker PK. Sustainable use of waste glass in alkali activated materials against H2SO4 and HCl acid attacks. Clean Eng Technol. 2022;6:100354. https://doi.org/10.1016/j.clet.2021.100354.

    Article  Google Scholar 

  18. Burciaga-Díaz O, Durón-Sifuentes M, Díaz-Guillén JA, Escalante-García JI (2020) Effect of waste glass incorporation on the properties of geopolymers formulated with low purity metakaolin. Cem Concr Compos. 107

  19. Kubatova D, Kotlanova MK, Khongova I, Zezulova A, Bohac M. Use the waste glass for the synthesis of geopolymer-zeolite composites. J Phys Conf Ser. 2022;2341(1):012012.

    Article  Google Scholar 

  20. Ilić BR, Mitrović AA, Miličić LR. Thermal treatment of kaolin clay to obtain metakaolin. Hem Ind. 2010;64(4):351–6.

    Article  Google Scholar 

  21. Rocha J, Klinowski J (1990) Solid‐State NMR studies of the structure and reactivity of metakaolinite. Angew Chemie Int Ed English. 29(5)

  22. Zivica V, Palou MT, Bágeľ TIĽ. High strength metahalloysite based geopolymer. Compos Part B Eng. 2014;57:155–65.

    Article  CAS  Google Scholar 

  23. Yao X, Zhang Z, Zhu H, Chen Y. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry. Thermochim Acta. 2009;493(1–2):49–54.

    Article  CAS  Google Scholar 

  24. Chithiraputhiran S, Neithalath N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr Build Mater. 2013;45:233–42. https://doi.org/10.1016/j.conbuildmat.2013.03.061.

    Article  Google Scholar 

  25. Mohamed R, Abd Razak R, Abdullah MMAB, Abd Rahim SZA, Yuan-Li L, Subaer, et al (2022) Heat evolution of alkali-activated materials: a review on influence factors. Constr Build Mater. 314

  26. Zhang S, Keulen A, Arbi K, Ye G. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem Concr Res. 2017;102:29–40. https://doi.org/10.1016/j.cemconres.2017.08.012.

    Article  CAS  Google Scholar 

  27. Granizo M, Blanco MT (1998) Alkaline activation of metakaolin. J Therm Anal. pp 957–65

  28. Gu L, Visintin P, Bennett T. Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes. Cem Concr Compos. 2018;87:187–204. https://doi.org/10.1016/j.cemconcomp.2017.12.015.

    Article  CAS  Google Scholar 

  29. Samarakoon MH, Ranjith PG, De Silva VRS. Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization. Constr Build Mater. 2020;241:118013. https://doi.org/10.1016/j.conbuildmat.2020.118013.

    Article  CAS  Google Scholar 

  30. Gao X, Yu QL, Brouwers HJH. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends. Constr Build Mater. 2015;80:105–15.

    Article  Google Scholar 

  31. Chaipanich A, Wianglor K, Piyaworapaiboon M, Sinthupinyo S. Thermogravimetric analysis and microstructure of alkali-activated metakaolin cement pastes. J Therm Anal Calorim. 2019;138(3):1965–70. https://doi.org/10.1007/s10973-019-08592-z.

    Article  CAS  Google Scholar 

  32. Khan MZN, Shaikh F, uddin A, Hao Y, Hao H,. Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Constr Build Mater. 2016;125:809–20. https://doi.org/10.1016/j.conbuildmat.2016.08.097.

    Article  CAS  Google Scholar 

  33. Tommasini Vieira Ramos FJH, de Fátima Marques Vieira M, Tienne LGP, de Oliveira Aguiar V,. Evaluation and characterization of geopolymer foams synthesized from blast furnace with sodium metasilicate. J Mater Res Technol. 2020;9(5):12019–29. https://doi.org/10.1016/j.jmrt.2020.08.019.

    Article  CAS  Google Scholar 

  34. Wang Y, Cao Y, Zhang Z, Huang J, Zhang P, Ma Y, et al. Study of acidic degradation of alkali-activated materials using synthetic C-(N)-A-S-H and N-A-S-H gels. Compos Part B Eng. 2022;230:109510. https://doi.org/10.1016/j.compositesb.2021.109510.

    Article  CAS  Google Scholar 

  35. Aly Z, Vance ER, Perera DS, Hanna JV, Griffith CS, Davis J, et al. Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al = 1.5–4. J Nucl Mater. 2008;378(2):172–9.

    Article  CAS  Google Scholar 

  36. Allahverdi A, Skvara F. Sulfuric acid attack on hardened paste of geopolymer cements Part 1.Mechanism of corrosion at relatively high concentrations. Ceram-Silik. 2005;49(4):225–9.

    CAS  Google Scholar 

  37. Komljenović MM, Baščarević Z, Marjanović N, Nikolić V. Decalcification resistance of alkali-activated slag. J Hazard Mater. 2012;233–234:112–21.

    Article  PubMed  Google Scholar 

  38. Ahmad MR, Chen B, Shah SFA. Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Constr Build Mater. 2020;265:120320. https://doi.org/10.1016/j.conbuildmat.2020.120320.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out within project No. 23-05122S, financed by the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contributions to the paper as follows: study conception and design: DK; material preparation: DK; data collection and analysis: DK, MKK, IK; interpretation of results: DK, AZ, MB; draft manuscript preparation: DK, AZ, MB. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Dana Kubatova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubatova, D., Zezulová, A., Khongová, I. et al. Effect of waste glass content on resistance of geopolymer binders to sulfuric acid attack. J Therm Anal Calorim 148, 13011–13026 (2023). https://doi.org/10.1007/s10973-023-12332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12332-9

Keywords

Navigation