Skip to main content
Log in

Preparation and properties of different azide polymer-modified nitrocellulose spherical powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Azide polymers are currently a major research hotspot in the field of energetic materials, with the advantages of high energy, low sensitivity and good thermal stability. A series of new azide polymer-modified nitrocellulose (NC) spherical powder were prepared by the internal solution method with introducing different azide polymers (GAP, GAPA, GAPE, and GAP-ETPE) into NC. The effect of different azide polymers on the performance of NC spherical powder was investigated. The addition of azide polymers led to a decrease in the average particle size of the spherical powder. The addition of azide polymer substantially reduced the mechanical sensitivities of NC spherical powder and improved their thermal stability. The critical temperature of thermal explosion (Tb) and self-accelerated decomposition temperature (TSADT) of the modified spherical powder were 5~10 °C higher than those of the NC spherical powder. Meanwhile, the mechanical sensitivities of the azide polymer-modified spherical powder were significantly reduced, in which the impact sensitivity was reduced by about 30.3%~65.3%, and the friction sensitivity was reduced by about 23.3%~41.1%. Therefore, the azide polymer-modified spherical powder have more excellent thermal stability and safety performance, and probably have a broader application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chai H, Duan Q, Cao H, Li M, Sun J. Effects of nitrogen content on pyrolysis behavior of nitrocellulose. Fuel. 2020;264(15):116853. https://doi.org/10.1016/j.fuel.2019.116853.

    Article  CAS  Google Scholar 

  2. Dourari M, Tarchoun AF, Trache D, Abdelaziz A, Bekhouche S, Harrat A, et al. Unraveling the effect of MgAl/CuO nanothermite on the characteristics and thermo-catalytic decomposition of nanoenergetic formulation based on nanostructured nitrocellulose and hydrazinium nitro-triazolone. Catalysts. 2022;12(12):1573. https://doi.org/10.3390/catal12121573.

    Article  CAS  Google Scholar 

  3. Tarchoun AF, Sayah ZBD, Trache D, Klapötke TM, Belmerabt M, Abdelaziz A, et al. Towards investigating the characteristics and thermal kinetic behavior of emergent nanostructured nitrocellulose prepared using various sulfonitric media. J Nanostruct Chem. 2022;12(5):963–77. https://doi.org/10.1007/s40097-021-00466-x.

    Article  CAS  Google Scholar 

  4. Kim H-S. Improvement of mechanical properties of plastic bonded explosive using neutral polymeric bonding agent. Propellants Explos Pyrotech. 1999;24(2):96–8. https://doi.org/10.1002/(SICI)1521-4087(199904)24:2%3c96::AID-PREP96%3e3.0.CO;2-X.

    Article  CAS  Google Scholar 

  5. Zhang W, Fan X, Wei H, Li J. Application of nitramines coated with nitrocellulose in minimum signature isocyanate-cured propellants. Propellants Explos Pyrotech. 2008;33(4):279–85. https://doi.org/10.1002/prep.200800220.

    Article  CAS  Google Scholar 

  6. Wu Y, Luo Y, Ge Z. Properties and application of a novel type of glycidyl azide polymer (GAP)-modified nitrocellulose powders. Propellants Explos Pyrotech. 2015;40(1):67–73. https://doi.org/10.1002/prep.201400005.

    Article  CAS  Google Scholar 

  7. Singh H, Khire V. Studies on low vulnerability gun propellants based on conventional binder and energetic plasticizers. Int J Energ Mater Chem Propuls. 2008;7(3):187–92. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v7.i3.20.

    Article  Google Scholar 

  8. Ampleman G. Development of a new generation of insensitive explosives and gun propellants. Int J Energ Mater Chem Propuls. 2010;9(2):107–32. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v9.i2.10.

    Article  Google Scholar 

  9. Meng X, Xiao Z. Synthesis, thermal properties and sensitivity of ladder-like nitrocellulose grafted by polyethylene glycol. Propellants Explos Pyrotech. 2018;43(3):300–7. https://doi.org/10.1002/prep.201700193.

    Article  CAS  Google Scholar 

  10. Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124(3):1485–96. https://doi.org/10.1007/s10973-016-5293-1.

    Article  CAS  Google Scholar 

  11. Xiao Z, Ying S, He W, Xu F, Sun P. Synthesis, morphology, component distribution, and mechanical properties of nitrocellulose/gradient poly(ethylene glycol dimethacrylate) semi-IPN material. J Appl Polym Sci. 2007;105(2):510–4. https://doi.org/10.1002/app.26171.

    Article  CAS  Google Scholar 

  12. Davenas A. Development of modern solid propellants. J Propul Power. 2003;19(6):1108–28. https://doi.org/10.2514/2.6947.

    Article  CAS  Google Scholar 

  13. Zhang Y, Zhao J, Yang P, He S, Huang H. Synthesis and characterization of energetic GAP-b-PAEMA block copolymer. Polym Eng Sci. 2012;52(4):768–73. https://doi.org/10.1002/pen.22140.

    Article  CAS  Google Scholar 

  14. Hu Y, Jian X, Xiao L, Zhou W. Microphase separation and mechanical performance of thermoplastic elastomers based on poly(glycidyl azide)/poly(oxytetramethylene glycol). Polym Eng Sci. 2018;58(S1):E167–73. https://doi.org/10.1002/pen.24831.

    Article  CAS  Google Scholar 

  15. Sun Q, Sang C, Wang Z, Luo Y. Improvement of the creep resistance of glycidyl azide polyol energetic thermoplastic elastomer-based propellant by nitrocellulose filler and its mechanism. J Elastomers Plast. 2017;50(7):579–95. https://doi.org/10.1177/0095244317742680.

    Article  CAS  Google Scholar 

  16. Kumari D, Anjitha S, Pant CS, Patil M, Singh H, Banerjee S. Synthetic approach to novel azido esters and their utility as energetic plasticizers. RSC Adv. 2014;4(75):39924–33. https://doi.org/10.1039/C4RA06530A.

    Article  CAS  Google Scholar 

  17. Niehaus M. Compounding of glycidyl azide polymer with nitrocellulose and its influence on the properties of propellants. Propellants Explos Pyrotech. 2000;25(5):236–40. https://doi.org/10.1002/1521-4087(200011)25:5%3c236::AID-PREP236%3e3.0.CO;2-C.

    Article  CAS  Google Scholar 

  18. Schedlbauer F. LOVA gun propellants with GAP binder. Propellants Explos Pyrotech. 1992;17(4):164–70. https://doi.org/10.1002/prep.19920170404.

    Article  CAS  Google Scholar 

  19. Kumari D, Singh H, Patil M, Thiel W, Pant CS, Banerjee S. Synthesis, characterization, thermal and computational studies of novel tetra-azido esters as energetic plasticizers. Thermochim Acta. 2013;562:96–104. https://doi.org/10.1016/j.tca.2013.03.042.

    Article  CAS  Google Scholar 

  20. Yadav A, Pant CS, Das S. Research advances in bonding agents for composite propellants. Propellants Explos Pyrotech. 2020;45(5):695–704. https://doi.org/10.1002/prep.201900329.

    Article  CAS  Google Scholar 

  21. Cheng T. Polymers review of novel energetic polymers and binders–high energy propellant ingredients for the new space race. Des Monomers Polym. 2019;22(1):54–65. https://doi.org/10.1080/15685551.2019.1575652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gaur B, Lochab B, Choudhary V, Varma I. Azido polymers—energetic binders for solid rocket propellants. J Macromol Sci Part C: Polym Rev. 2003;43(4):505–45. https://doi.org/10.1081/MC-120025976.

    Article  CAS  Google Scholar 

  23. Wang Z, Zhang T, Zhao B, Luo Y. Effect of nitrocellulose (NC) on morphology, rheological and mechanical properties of glycidyl azide polymer based energetic thermoplastic elastomer/NC blends. Polym Int. 2017;66(5):705–11. https://doi.org/10.1002/pi.5312.

    Article  CAS  Google Scholar 

  24. Guo M, Ma Z, He L, He W, Wang Y. Effect of varied proportion of GAP-ETPE/NC as binder on thermal decomposition behaviors, stability and mechanical properties of nitramine propellants. J Therm Anal Calorim. 2017;130(2):909–18. https://doi.org/10.1007/s10973-017-6351-z.

    Article  CAS  Google Scholar 

  25. Wu Y, Yi Z, Luo Y, Ge Z, Du F, Chen S, et al. Fabrication and properties of glycidyl azide polymer-modified nitrocellulose spherical powders. J Therm Anal Calorim. 2017;129(3):1555–62. https://doi.org/10.1007/s10973-017-6387-0.

    Article  CAS  Google Scholar 

  26. Meng X, Pu C, Cui P, Xiao Z. Preparation, thermal and sensitivity properties of nano-sized spherical nitrocellulose composite crystal. Propellants Explos Pyrotech. 2020;45(8):1194–203. https://doi.org/10.1002/prep.201900319.

    Article  CAS  Google Scholar 

  27. Zhang Z, Wang G, Wang Z, Zhang Y, Ge Z, Luo Y. Synthesis and characterization of novel energetic thermoplastic elastomers based on glycidyl azide polymer (GAP) with bonding functions. Polym Bull. 2015;72(8):1835–47. https://doi.org/10.1007/s00289-015-1375-7.

    Article  CAS  Google Scholar 

  28. Tarchoun AF, Trache D, Abdelaziz A, Bekhouche S, Boukeciat H. Exploration of palm fronds as a prominent alternative resource for the production of energetic cellulose-rich biopolymers. Mater Today: Proc. 2022;53:31–5. https://doi.org/10.1016/j.matpr.2021.12.218.

    Article  CAS  Google Scholar 

  29. Tarchoun AF, Trache D, Klapötke TM, Abdelaziz A, Bekhouche S, Boukeciat H, et al. Making progress towards promising energetic cellulosic microcrystals developed from alternative lignocellulosic biomasses. J Energ Mater. 2022. https://doi.org/10.1080/07370652.2022.2032484.

    Article  Google Scholar 

  30. Touidjine S, Boulkadid KM, Trache D, Belkhiri S, Mezroua A. Preparation and characterization of polyurethane/nitrocellulose blends as binder for composite solid propellants. Propellants Explos Pyrotech. 2022;47(1):e202000340. https://doi.org/10.1002/prep.202000340.

    Article  CAS  Google Scholar 

  31. Zou X, Zhang W, Zhang Z, Gu Y, Fu X, Ge Z, et al. Study on properties of energetic plasticizer modified double-base propellant. Propellants Explos Pyrotech. 2021;46(11):1662–71. https://doi.org/10.1002/prep.202100085.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 127 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, P., Li, J., Zhang, X. et al. Preparation and properties of different azide polymer-modified nitrocellulose spherical powder. J Therm Anal Calorim 148, 9661–9671 (2023). https://doi.org/10.1007/s10973-023-12321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12321-y

Keywords

Navigation