Skip to main content
Log in

The preparation of ZIF-67 and its synergistic effect on fire performance of intumescent flame retardant polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Herein, zeolite imidazolate frameworks-67 defined as ZIF-67 was prepared and confirmed. The obtained ZIF-67 was served as a synergist in intumescent flame-retarded polypropylene (PP) composites to improve the flame retardant efficiency and smoke suppression performance. The results of thermogravimetric analysis indicated that the residual char of IFR/ZIF-67 with the mass ratio of 95:5 greatly enhanced from 24.9 mass% for IFR to 63.5 mass%, and increased by 155.0%. It was ascribed the complexation effect of cobalt ion in ZIF-67 for IFR system. With the incorporation of 18 mass% IFR/ZIF-67, the PP/IFR/ZIF-67 samples (PP-4) achieved UL-94V-0 rating during vertical burning tests and the limiting oxygen index (LOI) value was as high as 31.1%. Compared with PP/IFR (PP-1) containing 18 mass% IFR, the peak heat release rate (peak-HRR), total heat release (THR), peak smoke production rate (peak-SPR) and total smoke production (TSP) of PP-4 were decreased by 33.1%, 33.8%, 31.0% and 21.1%, respectively. The char residue of PP-4 was as high as 27.4 mass% at the end of cone calorimeter test (CCT). The more expanded, sufficient and dense char layer were generated during combustion, and the flame retardancy and smoke suppression of PP-4 were significantly improved. Meanwhile, the pyrolysis gaseous products were inhibited to enter into combustion zone due to the isolation effect of the generated intumescent char layer. Consequently, the PP/IFR/ZIF-67 composites with excellent flame retardant performance and smoke suppression were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu S, Zhang M, Li SY, Zeng HY, Du JZ, Chen CR, et al. The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene. Appl Clay Sci. 2020;185:105348.

    Article  CAS  Google Scholar 

  2. Quan YF, Shen RQ, Schweizer C, Parajuli P, Zhang ZR, Kulatilaka W, et al. Synergistic effects of zeolitic imidazolate frameworks (ZIFs) with different transition metals on intumescent flame-retarded polypropylene composites: a comparative study. J Mater Sci Technol. 2023;155:102–10.

    Article  Google Scholar 

  3. Zhong CZ, Xu S, Liu ZH, Lu JJ, Yang YM, Li JS, et al. Fabrication of hierarchical core-shell carbon microspheres@ layered double hydroxide@ polyphosphazene architecture in flame-retarding polypropylene. Eur Polym J. 2022;177:111405.

    Article  CAS  Google Scholar 

  4. Li YC, Xue BQ, Qi P, Gu XY, Sun J, Li HF, et al. The synergistic effect between bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate and polysiloxane on the photo-aging resistance and flame retardancy of polypropylene. Compos Part B Eng. 2022;234:109666.

    Article  CAS  Google Scholar 

  5. Huang PK, Wu F, Shen B, Ma XH, Zhao YQ, Wu MH, et al. Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation. Chem Eng J. 2019;370:1322–30.

    Article  CAS  Google Scholar 

  6. Qin YL, Li MC, Huang TK, Shen CH, Gao SJ. A study on the modification of polypropylene by a star-shaped intumescent flame retardant containing phosphorus and nitrogen. Polym Degrad Stabil. 2022;195:109801.

    Article  CAS  Google Scholar 

  7. Dang L, Lv ZH, Liu X. Influences of 4ZnO·B2O3·H2O whisker based intumescent flame retardant on the mechanical, flame retardant and smoke suppression properties of polypropylene composites. J Appl Polym Sci. 2021;138(39):51016.

    Article  CAS  Google Scholar 

  8. Nie SB, Fang CY, Xu YX, Dong X, Yang JN, Kong FB, et al. Water resistance, flame retardancy, and thermal properties of hydrophobic polypropylene/bamboo fiber composites. J Therm Anal Calorim. 2022;147:12547–59.

    Article  CAS  Google Scholar 

  9. Cao ZG, Chen QY, Li XX, Zhang YC, Ren MH, Sun LF, et al. The non-negligible environmental risk of recycling halogenated flame retardants associated with plastic regeneration in China. Sci Total Environ. 2019;646:1090–6.

    Article  CAS  PubMed  Google Scholar 

  10. Nazir R, Gooneie A, Lehner S, Jovic M, Rupper P, Ott N, et al. Alkyl sulfone bridged phosphorus flame-retardants for polypropylene. Mater Des. 2021;200:109459.

    Article  CAS  Google Scholar 

  11. Yuan GW, Yang B, Chen YH, Jia YG. Synthesis of a novel multi-structure synergistic POSS-GO-DOPO ternary graft flame retardant and its application in polypropylene. Compos Part A Appl S. 2019;117:345–56.

    Article  CAS  Google Scholar 

  12. Salasinska K, Mizera K, Celiński M, Kozikowski P, Borucka M, Gajek A. Thermal properties and fire behavior of polyethylene with a mixture of copper phosphate and melamine phosphate as a novel flame retardant. Fire Saf J. 2020;115:103137.

    Article  CAS  Google Scholar 

  13. Yurddaskal M, Celik E. Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite. Compos Struct. 2018;183:381–8.

    Article  Google Scholar 

  14. Xu B, Shao LS, Wang JY, Liu YT, Qian LJ. Enhancement of the intumescent flame retardant efficiency in polypropylene by synergistic charring effect of a hypophosphite/cyclotetrasiloxane bi-group compound. Polym Degrad Stabil. 2020;181:109281.

    Article  CAS  Google Scholar 

  15. Liu HC, Li S, Zhang ZY, Li B, Xu MJ. An efficient and convenient strategy toward fire safety and water resistance of polypropylene composites through design and synthesis of a novel mono-component intumescent flame retardant. Polym Adv Technol. 2019;30(7):1543–54.

    Article  CAS  Google Scholar 

  16. Liu LB, Xu Y, He YT, Xu MJ, Shi ZX, Hu HC, et al. An effective mono-component intumescent flame retardant for the enhancement of water resistance and fire safety of thermoplastic polyurethane composites. Polym Degrad Stabil. 2019;167:146–56.

    Article  CAS  Google Scholar 

  17. Li WX, Liao DJ, Hu XP, Cheng Z, Xie CQ. Synergistic improvement of fire retardancy and mechanical properties of ferrocene-based polymer in intumescent polypropylene composite. Polym Adv Technol. 2019;30(9):2402–13.

    Article  CAS  Google Scholar 

  18. Tian XS, Zhang YF, Li Y, Zhong JR. Effect of char-forming agents rich in tertiary carbon on flame retardant properties of polypropylene. J Therm Anal Calorim. 2022;147:10391–401.

    Article  CAS  Google Scholar 

  19. Chen XF, Huang CY, Shi YQ, Yuan BH, Sun YR, Bai ZM. MoO3–ZrO2 solid acid for enhancement in the efficiency of intumescent flame retardant. Powder Technol. 2019;344:581–9.

    Article  CAS  Google Scholar 

  20. Li YT, Li B, Dai JF, Jia H, Gao SL. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system. Polym Degrad Stabil. 2008;93(1):9–16.

    Article  CAS  Google Scholar 

  21. Tang WF, Han JP, Zhang S, Sun J, Li HF, Gu XY. Synthesis of 4A zeolite containing La from kaolinite and its effect on the flammability of polypropylene. Polym Compos. 2017;39(10):3461–71.

    Article  Google Scholar 

  22. Feng CM, Zhang Y, Liu SW, Chi ZG, Xu JR. Synergistic effects of 4A zeolite on the flame retardant properties and thermal stability of a novel halogen-free PP/IFR composite. Polym Adv Technol. 2013;24(5):478–86.

    Article  CAS  Google Scholar 

  23. Geng JM, Lan YH, Liu SS, He JY, Yang RJ, Li DH. Preparation and characterization of TCPP-CaMMT nanocompound and its composite with polypropylene. Nanomaterials. 2022;12(9):1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yue XP, Cao PP, Yang MX, Li CF, Wang ZW. Improving flame retardant and smoke suppression efficiency for PBS by adding a tannin surface and interfacial modified IFR/MMT synergist. Eur Polym J. 2022;181:111662.

    Article  CAS  Google Scholar 

  25. Shen H, Wu W, Wang ZY, Wu WZ, Yuan Y, Feng YL. Effect of modified layered double hydroxide on the flammability of intumescent flame retardant PP nanocomposites. J Appl Polym Sci. 2021;138(40):e51187.

    Article  Google Scholar 

  26. Jin L, Huang QJ, Zeng HY, Du JZ, Xu S. Organic modification of Mo-decorated MgAl layered double hydroxide for polymer flame retardancy. Compos Part A Appl S. 2020;129:105717.

    Article  CAS  Google Scholar 

  27. Jiang SY, Liu LB, Yang XH, Li B, Xu MJ. Nickel-aluminum hydrotalcite for improving flame retardancy and smoke suppression of intumescent flame retardant polypropylene: preparation, synergy, and mechanism study. Macromol Mater Eng. 2022;307:2200533.

    Google Scholar 

  28. Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev. 2012;112(2):673–4.

    Article  CAS  PubMed  Google Scholar 

  29. Pan YT, Zhang ZD, Yang RJ. The rise of MOFs and their derivatives for flame retardant polymeric materials: a critical review. Compos Part B Eng. 2020;199:108265.

    Article  CAS  Google Scholar 

  30. Hou YB, Qiu SL, Xu ZM, Chu FK, Liao C, Gui Z, et al. Which part of metal-organic frameworks affects polymers’ heat release, smoke emission and CO production behaviors more significantly, metallic component or organic ligand? Compos Part B Eng. 2021;223:109113.

    Article  Google Scholar 

  31. Nabipour H, Wang X, Song L, Hu Y. Metal-organic frameworks for flame retardant polymers application: a critical review. Compos Part A Appl S. 2020;139:106113.

    Article  CAS  Google Scholar 

  32. Li B, Xu MJ. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stabil. 2006;91(6):1380–6.

    Article  CAS  Google Scholar 

  33. Qian JF, Sun FA, Qin LZ. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett. 2012;82:220–3.

    Article  CAS  Google Scholar 

  34. Zheng Y, Lu YS, Zhou KQ. A novel exploration of metal–organic frameworks in flame-retardant epoxy composites. J Therm Anal Calorim. 2019;138(2):905–14.

    Article  CAS  Google Scholar 

  35. Qin JN, Wang SB, Wang XC. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl Catal B. 2017;209:476–82.

    Article  CAS  Google Scholar 

  36. Kong QH, Li L, Zhang MM, Chai HY, Li WX, Zhu F, et al. Improving the thermal stability and flame retardancy of epoxy resins by lamellar cobalt potassium pyrophosphate. Polymers. 2022;14(22):4927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Xu MJ, Li B. Synthesis of N-methyl triazine-ethylenediamine copolymer charring foaming agent and its enhancement on flame retardancy and water resistance for polypropylene composites. Polym Degrad Stabil. 2016;131:20–9.

    Article  CAS  Google Scholar 

  38. Kong QH, Zhu HJ, Huang S, Wu T, Zhu F, Zhang YL, et al. Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochim Acta. 2022;707:179112.

    Article  CAS  Google Scholar 

  39. Shen RQ, Quan YF, Zhang ZR, Ma R, Wang QS. Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene. Ind Eng Chem Res. 2022;61(21):7292–302.

    Article  CAS  Google Scholar 

  40. Xu Y, Zhou R, Ma G, Deng LS, Liu HM, Ding YM, et al. Preparation of a cobalt metal-organic framework (Co-MOF) and its application as a polypropylene flame retardant by compounding with melamine polyphosphate. Polym Test. 2022;116:107765.

    Article  CAS  Google Scholar 

  41. Zhou RM, Lai XJ, Li HQ, Tang S, Zeng XR. Enhancement of wollastonite on flame retardancy and mechanical properties of PP/IFR composite. Polym Compos. 2014;35(1):158–66.

    Article  CAS  Google Scholar 

  42. Zhang NE, Zhang J, Yan H, Guo XR, Sun Q, Guo RJ. A novel organic-inorganic hybrid K-HBPE@APP performing excellent flame retardancy and smoke suppression for polypropylene. J Hazard Mater. 2019;373:856–65.

    Article  CAS  PubMed  Google Scholar 

  43. Ren HY, Qing KL, Chen Y, Lin YJ, Duan X. Smoke suppressant in flame retarded thermoplastic polyurethane composites: synergistic effect and mechanism study. Nano Res. 2021;14(11):3926–34.

    Article  CAS  Google Scholar 

  44. Chen FQ, Wang JH, Guo Z, Jiang F, Ouyang RH, Ding P. Machine learning and structural design to optimize the flame retardancy of polymer nanocomposites with graphene oxide hydrogen bonded zinc hydroxystannate. ACS Appl Mater Inter. 2021;13(45):53425–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Grant numbers 52073043 and 52173069), Fundamental Research Funds for the Central Universities (2572022CG03) and Key Research and Development Projects in Heilongjiang Province (GZ20210089).

Author information

Authors and Affiliations

Authors

Contributions

Xuhui Yang contributed to experiment, data curation, investigation and writing—original draft preparation. Siyu Jiang contributed to visualization and writing—review and editing. Zhiyong Zhang contributed to conceptualization, methodology, writing—review and editing. Bin Li contributed to methodology and supervision. Miaojun Xu contributed to conceptualization and resources.

Corresponding authors

Correspondence to Zhiyong Zhang or Miaojun Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Jiang, S., Zhang, Z. et al. The preparation of ZIF-67 and its synergistic effect on fire performance of intumescent flame retardant polypropylene. J Therm Anal Calorim 148, 9547–9560 (2023). https://doi.org/10.1007/s10973-023-12316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12316-9

Keywords

Navigation