Skip to main content
Log in

Revolutionizing heat transfer: exploring ternary hybrid nanofluid slip flow on an inclined rotating disk with thermal radiation and viscous dissipation effects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The primary aim of this study is to investigate the influence of a time-varying magnetic field on the unsteady slip flow of a ternary hybrid nanofluid over an inclined rotating disk, and to analyze the associated heat transfer mechanism. The hybrid nanofluid is composed of copper, titanium, and aluminium oxide suspended in water, serving as the base fluid. The heat transfer mechanism considered in this study comprises Joule heating and viscous dissipation. Results demonstrate that the inclusion of thermal radiation significantly enhances the heat transfer system and renders it more realistic under the effects of convection. The mathematical problem is defined by a set of non-linear partial differential equations and associated slip boundary conditions. Using a suitable similarity transformation, the proposed mathematical system is transformed into a system of nonlinear ordinary differential equations incorporating slip boundary conditions. Subsequently, the transformed equations are solved using the Homotopy Analysis Method (HAM). Graphs of the accurate results of the dimensionless velocity and temperature for various flow parameters provide a better understanding of the heat transfer characteristics of this system. It is observed that the influence of the magnetic reduces the heat transfer rate for stable non-zero slip. These findings have important implications for the design and optimization of heat transfer systems in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that has been used is confidential.

Abbreviations

\(B_{0}\) :

Magnetic field \(\left( {{\text{NA}}^{ - 1} {\text{m}}^{ - 1} } \right)\)

\(F_{0}\) :

Non-uniform inertia coefficient

\(T_{\infty }\) :

Ambient temperature \(\left( {\text{K}} \right)\)

\(r,z\;\&\; \varphi\) :

Coordinates \(\left( {\text{m}} \right)\)

\(u,v\;\&\; w\) :

Velocity Components \(\left( {{\text{ms}}^{ - 1} } \right)\)

\(F^{\prime}\left( \eta \right)\;\&\; G\left( \eta \right)\) :

Radial and azimuthal velocities

\(\Theta \left( \eta \right)\) :

Dimensionless temperature

\(T\) :

Fluid temperature \(\left( {\text{K}} \right)\)

\(T_{{\text{w}}}\) :

Surface temperature

\(q_{{\text{r}}}\) :

Radiation heat flux \(\left( {{\text{kgs}}^{ - 3} } \right)\)

\(k\) :

Thermal conductivity \(\left( {{\text{wm}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(\beta_{{\text{T}}}\) :

Thermal expansion coefficient

\(k_{0}\) :

Darcy coefficient

\(S\) :

Unsteady parameter

\(M\) :

Magnetic parameter

\({\text{Re}}\) :

Reynold number

\(\Pr\) :

Prandtl number

\({\text{Ec}}\) :

Eckert number

\(C_{{\text{F}}} \;\&\; C_{{\text{G}}}\) :

Skin friction

\({\text{Nu}}\) :

Nusselt number

\(\mu\) :

Dynamic viscosity \(\left( {{\text{kgm}}^{ - 1} {\text{s}}^{ - 1} } \right)\)

\(\upsilon\) :

Kinematic viscosity \(\left( {{\text{m}}^{2} {\text{s}}^{ - 1} } \right)\)

\(\rho\) :

Density \(\left( {{\text{kgm}}^{ - 3} } \right)\)

\(\sigma\) :

Electrical conductivity \(\left( {{\text{sm}}^{ - 1} } \right)\)

\(\phi\) :

Volume fraction nanoparticles

\(\rho c_{{\text{p}}}\) :

Specific heat capacity \(\left( {{\text{jkg}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(\theta\) :

Angle

\(\varepsilon\) :

Velocity slip parameter

\(\gamma\) :

Thermal slip parameter

\(\tau\) :

Combine Grashof and Reynold number

\(f\) :

Base Fluid

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Ternary hybrid nanofluid

\({\text{thnf}}\) :

Hybrid nanofluid

\(\infty\) :

Ambient condition

References

  1. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab.(ANL), Argonne, IL (United States); 1995.

  2. Mohammadi M, Taheri A, Passandideh-Fard M, Sardarabadi M. Electronic chipset thermal management using a nanofluid-based mini-channel heat sink: an experimental study. Int Commun Heat Mass Transf. 2020;118:104836.

    Article  CAS  Google Scholar 

  3. Kaya M. An experimental investigation on thermal efficiency of two-phase closed thermosyphon (TPCT) filled with CuO/water nanofluid. Eng Sci Technol Int J. 2020;23(4):812–20.

    Google Scholar 

  4. Jamshed W, Goodarzi M, Prakash M, Nisar KS, Zakarya M, Abdel-Aty AH. Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: an optimal case study. Case Stud Thermal Eng. 2021;26:101160.

    Article  Google Scholar 

  5. Srikanth R, Balaji C. Experimental investigation on the heat transfer performance of a PCM based pin fin heat sink with discrete heating. Int J Therm Sci. 2017;111:188–203.

    Article  CAS  Google Scholar 

  6. Jamshed W, Nisar KS, Gowda RP, Kumar RN, Prasannakumara BC. Radiative heat transfer of second grade nanofluid flow past a porous flat surface: a single-phase mathematical model. Phys Scr. 2021;96(6):064006.

    Article  Google Scholar 

  7. Said Z, Assad ME, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ, Yousef BA. Enhancing the performance of automotive radiators using nanofluids. Renew Sustain Energy Rev. 2019;112:183–94.

    Article  CAS  Google Scholar 

  8. Chaji H, Ajabshirchi Y, Esmaeilzadeh E, Heris SZ, Hedayatizadeh M, Kahani M. Experimental study on thermal efficiency of flat plate solar collector using TiO2/water nanofluid. Mod Appl Sci. 2013;7(10):60–9.

    Article  Google Scholar 

  9. Muneeshwaran M, Srinivasan G, Muthukumar P, Wang CC. Role of hybrid-nanofluid in heat transfer enhancement–a review. Int Commun Heat Mass Transf. 2021;125:105341.

    Article  CAS  Google Scholar 

  10. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    Article  CAS  Google Scholar 

  11. Alqarni AJ, Abo-Elkhair RE, Elsaid EM, Abdel-Aty AH, Abdel-wahed MS. Effect of magnetic force and moderate Reynolds number on MHD Jeffrey hybrid nanofluid through peristaltic channel: application of cancer treatment. Eur Phys J Plus. 2023;138(2):1–30.

    Article  Google Scholar 

  12. Sajid T, Jamshed W, Eid MR, Altamirano GC, Aslam F, Alanzi AM, Abd-Elmonem A. Magnetized Cross tetra hybrid nanofluid passed a stenosed artery with nonuniform heat source (sink) and thermal radiation: novel tetra hybrid Tiwari and Das nanofluid model. J Magn Magn Mater. 2023;569:170443.

    Article  CAS  Google Scholar 

  13. Kanti PK, Maiya MP. Rheology and thermal conductivity of graphene oxide and coal fly ash hybrid nanofluids for various particle mixture ratios for heat transfer applications: experimental study. Int Commun Heat Mass Transf. 2022;138:106408.

    Article  CAS  Google Scholar 

  14. Aziz A, Jamshed W, Aziz T, Bahaidarah HM, Ur RK. Entropy analysis of Powell-Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation. J Therm Anal Calorim. 2021;143:1331–43.

    Article  CAS  Google Scholar 

  15. Taherialekouhi R, Rasouli S, Khosravi A. An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. Int J Heat Mass Transf. 2019;145:118751.

    Article  CAS  Google Scholar 

  16. Ali I, Gul T, Khan A. Unsteady hydromagnetic flow over an inclined rotating disk through neural networking approach. Mathematics. 2023;11(8):1893.

    Article  Google Scholar 

  17. Jamshed W, Nisar KS, Ibrahim RW, Mukhtar T, Vijayakumar V, Ahmad F. Computational frame work of Cattaneo-Christov heat flux effects on engine oil based williamson hybrid nanofluids: a thermal case study. Case Stud Thermal Eng. 2021;26:101179.

    Article  Google Scholar 

  18. Islam N, Pasha AA, Jamshed W, Ibrahim RW, Alsulami R. On Powell-Eyring hybridity nanofluidic flow based Carboxy-Methyl-Cellulose (CMC) with solar thermal radiation: a quadratic regression estimation. Int Commun Heat Mass Transf. 2022;138:106413.

    Article  CAS  Google Scholar 

  19. Hussain SM, Jamshed W. A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method. Int Commun Heat Mass Transf. 2021;129:105671.

    Article  CAS  Google Scholar 

  20. Jamshed W, Devi SU, Nisar KS. Single phase based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor. Phys Scr. 2021;96(6):065202.

    Article  Google Scholar 

  21. Sahoo RR, Kumar V. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. Int Commun Heat Mass Transf. 2020;111:104451.

    Article  CAS  Google Scholar 

  22. Wang J, Xu YP, Qahiti R, Jafaryar M, Alazwari MA, Abu-Hamdeh NH, Issakhov A, Selim MM. Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J Petrol Sci Eng. 2022;208:109734.

    Article  CAS  Google Scholar 

  23. Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Sol Energy. 2019;183:173–203.

    Article  CAS  Google Scholar 

  24. Sajid T, Pasha AA, Jamshed W, Shahzad F, Eid MR, Ibrahim RW, El Din SM. Radiative and porosity effects of trihybrid Casson nanofluids with Bödewadt flow and inconstant heat source by Yamada-Ota and Xue models. Alex Eng J. 2023;66:457–73.

    Article  Google Scholar 

  25. Kármán TV. Über laminare und turbulente Reibung. ZAMM J Appl Math Mech Zeitschrift für Angew Math Mech. 1921;1(4):233–52.

    Article  Google Scholar 

  26. Owen JM, Roger RH. Flow and heat transfer in rotating-disc systems. Volume I-Rotor-stator systems. NASA STI/Recon Tech Rep A. 1989;90:45759.

    Google Scholar 

  27. Miklavčič M, Wang CY. The flow due to a rough rotating disk. Zeitschrift Angew Math Phys ZAMP. 2004;55:235–46.

    Article  Google Scholar 

  28. Shahzad F, Jamshed W, Eid MR, Ibrahim RW, Aslam F, Isa SS, Guedri K. The effect of pressure gradient on MHD flow of a tri-hybrid Newtonian nanofluid in a circular channel. J Magn Magn Mater. 2023;568:170320.

    Article  CAS  Google Scholar 

  29. Turkyilmazoglu M, Senel P. Heat and mass transfer of the flow due to a rotating rough and porous disk. Int J Therm Sci. 2013;63:146–58.

    Article  Google Scholar 

  30. Devi SA, Devi SS. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int J Nonlinear Sci Numer Simul. 2016;17(5):249–57.

    Article  CAS  Google Scholar 

  31. Acharya N, Maity S, Kundu PK. Entropy generation optimization of unsteady radiative hybrid nanofluid flow over a slippery spinning disk. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(11):6007–24.

    Article  CAS  Google Scholar 

  32. Akbar NS, Khan ZH, Nadeem S. The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. J Mol Liq. 2014;196:21–5.

    Article  CAS  Google Scholar 

  33. Turkyilmazoglu M. Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet. Int J Therm Sci. 2011;50(11):2264–76.

    Article  Google Scholar 

  34. Nayak MK, Shaw S, Pandey VS, Chamkha AJ. Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian J Phys. 2018;92:1017–28.

    Article  CAS  Google Scholar 

  35. Zhang JK, Dong H, Zhou EZ, Li BW, Tian XY. A combined method for solving 2D incompressible flow and heat transfer by spectral collocation method and artificial compressibility method. Int J Heat Mass Transf. 2017;112:289–99.

    Article  Google Scholar 

  36. Nayak MK. Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium. Meccanica. 2016;51(8):1699–711.

    Article  Google Scholar 

  37. Ganga B, Ansari SM, Ganesh NV, Hakeem AA. MHD flow of Boungiorno model nanofluid over a vertical plate with internal heat generation/absorption. Propuls Power Res. 2016;5(3):211–22.

    Article  Google Scholar 

  38. Hayat T, Javed M, Imtiaz M, Alsaedi A. Convective flow of Jeffrey nanofluid due to two stretchable rotating disks. J Mol Liq. 2017;240:291–302.

    Article  CAS  Google Scholar 

  39. Deng YJ, Huang GJ, Cao LF, Wu XD, Huang L. Effect of ageing temperature on precipitation of Al-Cu-Li-Mn-Zr alloy. J Cent South Univ. 2018;25(6):1340–9.

    Article  CAS  Google Scholar 

  40. Ibrahim SM, Lorenzini G, Kumar PV, Raju CS. Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet. Int J Heat Mass Transf. 2017;111:346–55.

    Article  CAS  Google Scholar 

  41. Thumma T, Bég OA, Kadir A. Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet. J Mol Liq. 2017;232:159–73.

    Article  CAS  Google Scholar 

  42. Sajid T, Ayub A, Shah SZ, Jamshed W, Eid MR, El Din ES, Irfan R, Hussain SM. Trace of chemical reactions accompanied with arrhenius energy on ternary hybridity nanofluid past a wedge. Symmetry. 2022;14(9):1850.

    Article  CAS  Google Scholar 

  43. Umavathi JC, Bég OA. Computation of von Karman thermo-solutal swirling flow of a nanofluid over a rotating disk to a non-Darcian porous medium with hydrodynamic/thermal slip. J Thermal Anal Calorim. 2021;147:1–6.

    Google Scholar 

  44. Waqas H, Imran M, Muhammad T, Sait SM, Ellahi R. Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. J Therm Anal Calorim. 2021;145:523–39.

    Article  CAS  Google Scholar 

  45. Aladdin NA, Bachok N, Pop I. Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects. Alex Eng J. 2020;59(2):657–66.

    Article  Google Scholar 

  46. Khan MI, Waqas H, Khan SU, Imran M, Chu YM, Abbasi A, Kadry S. Slip flow of micropolar nanofluid over a porous rotating disk with motile microorganisms, nonlinear thermal radiation and activation energy. Int Commun Heat Mass Transf. 2021;122:105161.

    Article  CAS  Google Scholar 

  47. Ramzan M, Riasat S, Chung JD, Chu YM, Sheikholeslami M, Kadry S, Howari F. Upshot of heterogeneous catalysis in a nanofluid flow over a rotating disk with slip effects and Entropy optimization analysis. Sci Rep. 2021;11(1):120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liao S. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: CRC Press; 2003.

    Book  Google Scholar 

  49. Mustafa M. MHD nanofluid flow over a rotating disk with partial slip effects: buongiorno model. Int J Heat Mass Transf. 2017;108:1910–6.

    Article  Google Scholar 

  50. Aziz A, Alsaedi A, Muhammad T, Hayat T. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk. Results Phys. 2018;8:785–92.

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the Future university in egypt engineering research project 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman.

Ethics declarations

Conflict of interest

The authors affirm that they have no known financial or interpersonal conflicts that would have seemed to have an impact on the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Areshi, M., Khan, N. et al. Revolutionizing heat transfer: exploring ternary hybrid nanofluid slip flow on an inclined rotating disk with thermal radiation and viscous dissipation effects. J Therm Anal Calorim 148, 9131–9144 (2023). https://doi.org/10.1007/s10973-023-12299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12299-7

Keywords

Navigation