Skip to main content
Log in

Performance investigation of novel semitransparent buildings with integrated photovoltaic windows based on fluid-thermal-electric numerical model in the Persian Gulf region

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to improve traditional construction toward zero- or almost zero-energy buildings, there is a demand for more reliable and renewable energy resources. Solar energy is environmentally friendly, abundant, and has a low environmental impact. The integration of solar panels with semitransparent windows is used for electricity generation and sunlight penetration, leading to better energy efficiency and reducing energy consumption. This paper aims to analyze the potential of a novel building-integrated photovoltaic semitransparent window as a resource of sustainable energy to save energy use in the office building. In this study, an advanced multi-physics performance prediction approach for a semitransparent building with integrated photovoltaic windows on office building facades was developed in Bahrain’s subtropical desert climate. A parametric study was performed to examine the thermal performance and electrical capacity of semitransparent-integrated photovoltaic solar windows that takes into account the electrical properties, combined radiation and conduction heat transfers, and equivalent heat source methods within solar energy cells. Moreover, a side-by-side comparison study with the reference insulated glass unit investigates the outer and inner surface temperatures. For five design window geometries, 3D-coupled fluid-thermal-electrical multi-physics simulations were run using the COMSOL-coupled solver. The electrical modeling has been developed using MATLAB software, and the energy performance calculation of a sample of a typical commercial building in Manama has been carried out in the ESP-r software environment. The computational results were compared with measurements and manufacturer data. The results obtained illustrate the potential of Xenon-filled double-glazing windows (XDGWs) with integrated PV to save 12% of the energy consumption for cooling purposes in the summer. The results show that the maximum energy produced by solar panels is 248.42 W, and the maximum electrical efficiency of the photovoltaic module is 17.61% at a solar irradiance of 1000 W m−2. The expected annual solar power generated by the building facade using 500 panels is nearly 140,755 kWh. The results suggested that the XDGW with integrated PV outperformed the reference insulated glass unit in terms of thermal insulation, solar heat flux, and U-factor. On the whole, the simulated outer and inside surface temperatures are in good agreement with the measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A:

Area

\({a}_{0}\) :

Modified diode ideality factor

A:

Window surface area, m2

\({a}_{\mathrm{ref}}\) :

Modified diode ideality factor at STC

E :

Total energy

\({E}_{\mathrm{g}}\) :

Band-gap energy of PV cell material (eV)

\({E}_{\mathrm{g},\mathrm{ref}}\) :

Band-gap energy of PV cell material at STC (eV)

G:

Incident irradiance, W m−2

H :

Enthalpy

I :

Unit vector

\({I}_{\mathrm{L}}\) :

Light generated current (A)

\({I}_{\mathrm{L},\mathrm{ref}}\) :

Light generated current at STC (A)

\({I}_{\mathrm{o}}\) :

Diode reverse saturation current (A)

\({I}_{\mathrm{o},\mathrm{ref}}\) :

Diode reverse saturation current at STC (A)

\(m\) :

Temperature dependence parameter for \({a}_{0}\)

\(n\) :

Surface normal

P :

Pressure

Q :

Heat flow rate per unit area (w m2)

q″:

Heat flux vector

\({R}_{\mathrm{sh}}\) :

Series resistance at STC (Ω)

\({R}_{\mathrm{sh},\mathrm{ref}}\) :

Shunt resistance (Ω)

\(S\) :

Plane-of-array absorbed solar radiation at operating conditions (W m−2)

S E :

Radiation energy source

\({S}_{\mathrm{ref}}\) :

Absorbed solar radiation at STC (W m−2)

\({T}_{\mathrm{cell}}\) :

PV cells temperature (K)

\({T}_{\mathrm{cell},\mathrm{ref}}\) :

PV cells temperature at STC (K)

U:

Overall heat transfer coefficient (W m2 K)

\({\mu }_{\mathrm{isc}}\) :

Temperature coefficient of short circuit current

V :

Continuum velocity

V :

Volume

v r :

Relative velocity

Q:

Heat flow rate per unit area (w m2)

References

  1. Shukla AK, Sudhakar K, Baredar P. Exergetic analysis of building integrated semitransparent photovoltaic module in clear sky condition at Bhopal India. Case Stud Thermal Eng. 2016;8:142–51.

    Article  Google Scholar 

  2. Matungwa BJ. An analysis of PV solar electrification on rural livelihood transformation: a case of Kisiju-Pwani in Mkuranga district. Tanzania: University of Oslo, Blindern, Norway; 2014.

    Google Scholar 

  3. Li DH, Lam TN, Chan WW, Mak AH. Energy and cost analysis of semi-transparent photovoltaic in office buildings. Appl Energy. 2009;86:722–9.

    Article  CAS  Google Scholar 

  4. Güneralp B, Zhou Y, Ürge-Vorsatz D, et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc Natl Acad Sci. 2017;114:8945–50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berardi U. A cross-country comparison of the building energy consumptions and their trends. Resour Conserv Recycl. 2017;123:230–41.

    Article  Google Scholar 

  6. Tripathy M, Kumar M, Sadhu P. Photovoltaic system using Lambert W function-based technique. Sol Energy. 2017;158:432–9.

    Article  Google Scholar 

  7. Cao X, Dai X, Liu J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016;128:198–213.

    Article  Google Scholar 

  8. Ban-Weiss G, Wray C, Delp W, Ly P, Akbari H, Levinson R. Electricity production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building. Energy Build. 2013;56:210–20.

    Article  Google Scholar 

  9. Tripathy M, Sadhu P, Panda S. A critical review on building integrated photovoltaic products and their applications. Renew Sustain Energy Rev. 2016;61:451–65.

    Article  Google Scholar 

  10. Aguacil S, LuÇin S, Rey E. Active surfaces selection method for building-integrated photovoltaics (BIPV) in renovation projects based on self-consumption and self-sufficiency. Energy Build. 2019;193:15–28.

    Article  Google Scholar 

  11. Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AW. Solar cell efficiency tables (version 54). Progress Photovolt Res Appl. 2019;27:565–75.

    Article  Google Scholar 

  12. Biyik E, Araz M, Hepbasli A, et al. A key review of building integrated photovoltaic (BIPV) systems. Eng Sci Technol Int J. 2017;20:833–58.

    Google Scholar 

  13. Shukla AK, Sudhakar K, Baredar P, Mamat R. Solar PV and BIPV system: barrier, challenges and policy recommendation in India. Renew Sustain Energy Rev. 2018;82:3314–32.

    Article  Google Scholar 

  14. Albaz A. Investigation into using stand-alone building integrated photovoltaic system (SABIPV) as a fundamental solution for Saudi rural areas and studying the expected impacts. Uxbridge: Brunel University London; 2015.

    Google Scholar 

  15. Doll CN, Pachauri S. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Policy. 2010;38:5661–70.

    Article  Google Scholar 

  16. Ismail KAR, Salinas CT, Henriquez JR. Comparison between PCM filled glass windows and absorbing gas filled windows. Energy Build. 2008;40:710–9.

    Article  Google Scholar 

  17. Collins RE, Simko TM. Current status of the science and technology of vacuum glazing. Sol Energy. 1998;62(3):189–213.

    Article  Google Scholar 

  18. Chow TT, Li CY, Lin Z. Innovative solar windows for cooling-demand climate. Sol Energy Mater Sol Cells. 2010;94(2):212–20.

    Article  CAS  Google Scholar 

  19. Aydın O. Conjugate heat transfer analysis of double pane windows. Build Environ. 2006;41(2):109–16.

    Article  Google Scholar 

  20. Kaklauskas A, Zavadskas EK, Raslanas S, Ginevicius R, Komka A, Malinauskas P. Selection of Low-E windows in retrofit of public buildings by applying multiple criteria method COPRAS: a Lithuanian case. Energy Build. 2006;38(5):454–62.

    Article  Google Scholar 

  21. Papaefthimiou S, Syrrakou E, Yianoulis P. Energy performance assessment of an electrochromic window. Thin Solid Films. 2006;502:257–64.

    Article  CAS  Google Scholar 

  22. Peng JQ, Curcija DC, Lu L, Selkowitz SE, Yang HX, Mitchell R. Developing a method and simulation model for evaluating the overall energy performance of a ventilated semi-transparent photovoltaic double-skin façade. Prog Photovolt Res Appl. 2015;24(6):781–99.

    Article  Google Scholar 

  23. Lu Y, Chang R, Shabunko V, Yee AT. The implementation of building-integratedphotovoltaics in Singapore: drivers versus barriers. Energy. 2019;168:400–8.

    Article  Google Scholar 

  24. Petrichenko K, Ürge-Vorsatz D, Cabeza LF. Modeling global and regional potentials for building-integrated solar energy generation. Energy Build. 2019;198:329–39.

    Article  Google Scholar 

  25. Yadav S, Panda S, Tripathy M. Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow. Renew Energy. 2018;127:11–23.

    Article  Google Scholar 

  26. Tripathy M, Yadav S, Sadhu P, Panda S. Determination of optimum tilt angle and accurate insolation of BIPV panel influenced by adverse effect of shadow. Renew Energ. 2017;104:211–23.

    Article  Google Scholar 

  27. Bücher K. Site dependence of the energy collection of PV modules. Solar Energy Mater Solar Cells. 1997;47(1–4):85–94.

    Article  Google Scholar 

  28. Yang H, Lu L. The optimum tilt angles and orientations of PV claddings for building-integrated photovoltaic (BIPV) applications. J Sol Energy Eng. 2007;129(2):253–5.

    Article  Google Scholar 

  29. Pour HSS, Beheshti HK, Rahnama M. The gain of the energy under the optimum angles of solar panels during a year in Isfahan Iran. Energy Sources Part A: Recovery, Utiliz Environ Effects. 2011;33(13):1281–90.

    Article  Google Scholar 

  30. Yang L, Liu X, Qian F. Optimal configurations of highrise buildings to maximize solar energy generation efficiency of building-integrated photovoltaic systems. Indoor Built Environ. 2019;28(8):1104–25.

    Article  Google Scholar 

  31. Ghosh A, Sundaram S, Mallick TK. Colour properties and glazing factors evaluation of multicrystalline based semitransparent photovoltaic-vacuum glazing for BIPV application. Renew Energy. 2019;131:730–6.

    Article  Google Scholar 

  32. Sarkar D, Kumar A, Sadhu PK. A survey on development and recent trends of renewable energy generation from BIPV systems. IETE Techn Rev. 2019;2019:1–23.

    Google Scholar 

  33. Fung YY, Yang HX. Study on thermal performance of semi-transparent building-integrated photovoltaic glazings. Energy Build. 2008;40:341–50.

    Article  Google Scholar 

  34. Han J, Lu L, Yang HX. Thermal behavior of a novel type see-through glazing system with integrated PV cells. Build Environ. 2009;44:2129–36.

    Article  Google Scholar 

  35. Han J, Lu L, Yang HX. Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with Low-E coatings. Appl Energy. 2010;87:3431–7.

    Article  CAS  Google Scholar 

  36. Yoon JH, Shim SR, An YS, Lee KH. An experimental study on the annual surface temperature characteristics of amorphous silicon BIPV window. Energy Build. 2013;62:166–75.

    Article  Google Scholar 

  37. Chen FZ, Wittkopf SK, Ng PK, Du H. Solar heat gain coefficient measurement of semi-transparent photovoltaic modules with indoor calorimetric hot box and solar simulator. Energy Build. 2012;53:74–84.

    Article  Google Scholar 

  38. Lu L, Law KM. Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong. Renew Energy. 2013;49:250–4.

    Article  Google Scholar 

  39. Polo Lopez CS, Sangiorgi M, (2014) Comparison assessment of BIPV façade semi-transparent modules: further insights on human comfort conditions. In: International Conference on Solar Heating and Cooling for Buildings and Industry, 2013, Freiburg, Germany. Energy Procedia. 48: 1419–1428

  40. Li DHW, Lam TNT, Cheung KL. Energy and cost studies of semi-transparent photovoltaic skylight. Energy Convers Manage. 2009;50(8):1981–90.

    Article  CAS  Google Scholar 

  41. Chow TT, Fong KF, He W, Lin Z, Chan AL. Performance evaluation of a PV ventilated window applying to office building of Hong Kong. Energy Build. 2007;39(6):643–50.

    Article  Google Scholar 

  42. Leite DE, Wagner A. Semi-transparent PV windows: a study for office buildings in Brazil. Energy Build. 2013;67:136–42.

    Article  Google Scholar 

  43. Park KE, Kang GH, Kim H, Yu GJ, Kim JT. Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy. 2010;35:2681–7.

    Article  CAS  Google Scholar 

  44. Li DHW, Lam TNT, Chan WWH, Mak AHL. Energy and cost analysis of semi-transparent photovoltaic in office buildings. Appl Energy. 2009;86(5):722–9.

    Article  CAS  Google Scholar 

  45. Xu S, Liao W, Huang J, Kang J. Optimal PV cell coverage ratio for semi-transparent photovoltaics on office building facades in central China. Energy Build. 2014;77:130–8.

    Article  Google Scholar 

  46. Olivieri L, Caamano-Martín E, Moralejo-Vazquez FJ, Martin-Chivelet N, Olivieri F, Neila-Gonzalez FJ. Energy saving potential of semi-transparent photovoltaic elements for building integration. Energy. 2014;76:572–83.

    Article  Google Scholar 

  47. Ng PK, Mithraratne N, Kua HW. Energy analysis of semi-transparent BIPV in Singapore buildings. Energy Build. 2013;66:274–81.

    Article  Google Scholar 

  48. Jinqing P, Dragan CC, Lin L, Stephen ES, Hongxing Y, Weilong Z. Numerical investigation of the energy saving potential of a semi-transparent photovoltaic doubleskin facade in a cool-summer Mediterranean climate. Appl Energy. 2016;165:345–56.

    Article  Google Scholar 

  49. Olivieria L, Caamano-Martina E, Olivierib F, Neila J. Integral energy performance characterization of semitransparent photovoltaic elements for building integration under real operation conditions. Energy Build. 2014;68:280–91.

    Article  Google Scholar 

  50. Yoon JH, Song JH, Lee SJ. Practical application of building integrated photovoltaic (BIPV) system using transparent amorphous silicon thin-film PV module. Sol Energy. 2011;85:723–33.

    Article  CAS  Google Scholar 

  51. Peng JQ, Lu L, Yang HX. An experimental study of the thermal performance of a novel photovoltaic double-skin facade in Hong Kong. Sol Energy. 2013;97:293–304.

    Article  CAS  Google Scholar 

  52. Zogou O, Stapountzis H. Flow and heat transfer inside a PV/T collector for building application. Appl Energy. 2012;91(1):103–15.

    Article  Google Scholar 

  53. Biyik E, Araz M, Hepbasli A, et al. A key review of building integrated photovoltaic (BIPV) systems. Eng Sci Technol Int J. 2017;20(3):833–58.

    Google Scholar 

  54. Khalili Z, Sheikholeslami M. Investigation of innovative cooling system for photovoltaic solar unit in existence of thermoelectric layer utilizing hybrid nanomaterial and Y-shaped fins. Sustain Cities Soc. 2023;93:104543. https://doi.org/10.1016/j.scs.2023.104543.

    Article  Google Scholar 

  55. Mashayekhi DR, Arasteh H, Sheykhi S, Niknejadi M, Chamkha AJ. Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions. Int J Numer Methods Heat Fluid Flow. 2019;30(4):1795–814. https://doi.org/10.1108/HFF-11-2018-0628.

    Article  Google Scholar 

  56. Sheikholeslami M, Jafaryar M. Thermal assessment of solar concentrated system with utilizing CNT nanoparticles and complicated helical turbulator. Int J Thermal Sci. 2023;184:108015. https://doi.org/10.1016/j.ijthermalsci.2022.108015.

    Article  CAS  Google Scholar 

  57. Sheikholeslami M. Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Solar Energy Mater Solar Cells. 2022;243:111786. https://doi.org/10.1016/j.solmat.2022.111786.

    Article  CAS  Google Scholar 

  58. Halme J, Mäkinen P. Theoretical efficiency limits of ideal coloured opaque photovoltaics. Energy Environ Sci. 2019;12(4):1274–85.

    Article  CAS  Google Scholar 

  59. Ahmed OK, Hamada KI, Salih AM. Performance analysis of PV/Trombe with water and air heating system: an experimental and theoretical study. Energy Sources Part A: Recovery, Utiliz Environ Effects. 2019;2019:1–21.

    Google Scholar 

  60. Shukla AK, Sudhakar K, Baredar P. Recent advancement in BIPV product technologies: a review. Energy Build. 2017;140:188–95.

    Article  Google Scholar 

  61. El Tayyan AA. PV system behavior based on datasheet. J Electron Devices. 2011;9:335–41.

    Google Scholar 

  62. Femia N, Petrone G, Spagnuolo G, Vitelli M. Power electronics and control techniques for maximum energy harvesting in photovoltaic systems. USA: CRC Press; 2017.

    Book  Google Scholar 

  63. Vargaftik NB, Vasilevskaia ID. Thermal conductivity of krypton and xenon at temperatures up to 5000°K. J Eng Phys. 1980;39:1217–22. https://doi.org/10.1007/BF00824745.

    Article  Google Scholar 

  64. Nižetić S, Grubišić-Čabo F, Marinić-Kragić I, Papadopoulos AM. Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels. Energy. 2016;111:211–25.

    Article  Google Scholar 

  65. Shyam AT, Tiwari GN. Handbook of solar energy: theory, analysis and applications. Singapore: Springer Singapore; 2016.

    Google Scholar 

  66. Alnaser WE, Alnaser NW, Batarseh I. Bahrain’s Bapco 5MW PV grid-connected solar project. Int J Power Renew Energy Syst. 2014;1:72–84.

    Google Scholar 

  67. Cho KJ, Cho DW. Solar heat gain coefficient analysis of a slim-type double skin window system: using an experimental and a simulation method. Energies. 2018;11:115.

    Article  Google Scholar 

  68. Bhamjee M, Nurick A, Madyira DM. An experimentally validated mathematical and CFD model of a supply air window: forced and natural flow. Energy Build. 2013;57:289–301.

    Article  Google Scholar 

  69. Dama A, Angeli D, Larsen OK. Naturally ventilated double-skin façade in modeling and experiments. Energy Build. 2017;144:17–29.

    Article  Google Scholar 

  70. Menter FR (1992) Zonal two equation k-ω turbulence models for aerodynamic flows. NASA technical memorandum 103975

  71. Brinkworh BJ, Cross BM, Marshall RH, Yang H. Thermal regulation of photovoltaic cladding. Sol Energy. 1997;61(3):169–78.

    Article  Google Scholar 

  72. Hiren D. Computational fluid dynamics analysis and experimental validation of improvement in overall energy efficiency of a solar photovoltaic panel by thermal energy recovery. J Renew Sustain Energy. 2014;6:488178. https://doi.org/10.1063/1.4885178.

    Article  Google Scholar 

  73. Jubayer CM, Hangan H. Numerical simulation of wind effects on a stand-alone ground mounted photo voltaic (PV) system. J Wind Eng Ind Aerodyn. 2014;134:56–64.

    Article  Google Scholar 

  74. Vaillon R, Robin L, Muresan C, Ménézo C. Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell”. Int J Heat Mass Transf. 2006;46:4454–68.

    Article  Google Scholar 

  75. José DH, Roberto R, Moyano J, Fernando D, David M. Determining the U-value of façades using the thermometric method: potentials and limitations. Energies. 2018;11(2):1–17. https://doi.org/10.3390/en11020360.

    Article  Google Scholar 

  76. Siddiqui MU. Multiphysics modeling of Photovoltaic panels and Arrays with auxiliary thermal collectors. Saudi Arabia: King Fahd University of Petroleum & Minerals; 2011.

    Google Scholar 

  77. Duffie JA, Beckman WA. Solar Engineering of thermal processes. 2nd ed. New York: John Wiley & Sons Inc; 1991.

    Google Scholar 

  78. Kha NP (2013) Semi-transparent building-integrated photovoltiac (BIPV) windows for the tropics

  79. Shukla AK, Sudhakar K, Baredar P. A comprehensive review on design of building integrated photovoltaic system. Energy Build. 2016;128:99–110.

    Article  Google Scholar 

  80. Clarke JA. Energy simulation in building design. 2nd ed. London: ButterworthHeinneman; 2001.

    Google Scholar 

  81. Qiu C, Yang H, Zhang W. Investigation on the energy performance of a novel semi-transparent BIPV system integrated with vacuum glazing. Build Simul. 2019;12(1):29–39.

    Article  Google Scholar 

  82. Chemisana D, Moreno A, Polo M, et al. Performance and stability of semitransparent OPVs for building integration: a benchmarking analysis. Renew Energy. 2019;137:177–88.

    Article  Google Scholar 

  83. Yang S, Cannavale A, Prasad D, Sproul A, Fiorito F. Numerical simulation study of BIPV/T double-skin facade for various climate zones in Australia: effects on indoor thermal comfort. Build Simul. 2019;12(1):51–67.

    Article  Google Scholar 

  84. El Desoky FA, El Mohamed Shams Eldin A, Sayed AR. The impact of using semi-transparent photovoltaic in office building facades on improving indoor thermal performance in Egypt. J Al-Azhar Univ Eng Sector. 2019;14(51):613–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrine Gaaliche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaaliche, N., Alsatrawi, H. Performance investigation of novel semitransparent buildings with integrated photovoltaic windows based on fluid-thermal-electric numerical model in the Persian Gulf region. J Therm Anal Calorim 148, 9063–9077 (2023). https://doi.org/10.1007/s10973-023-12290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12290-2

Keywords

Navigation