Skip to main content
Log in

Induction heating of sugarcane juice: thermo-enviro-economic analyses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heating of sugarcane juice gives concentrated sugarcane juice (CSJ) which becomes raw material for the production of a variety of value added products. Conventional ways of CSJ production are environment polluting and indulge in huge amount of energy losses. In this study, an attempt is made to obtain final CSJ (98°B) by induction heating (IH) which is environment friendly and causes minimum energy losses. The experiments are performed at constant heat flux (9947.5 W m−2) on samples of sugarcane juice having 14.2°B, 18.8°B, 23.9°B, and 27.4°B values of initial brix contents. Thermo-enviro-economic analyses are carried out for the experiments conducted on given samples. The results concluded that time required for obtaining final CSJ decreases and evaporation rate increases with increase in initial brix value of sugarcane juice. The energy required for obtaining final CSJ from sugarcane juice of 27.4°B is 683.43 kJ which is 154.3% less as compared to that of fresh sugarcane juice heating with 14.2°B. The environmental parameters have no discernible effects of initial brix value while economic factors were improved. IH is observed thermally and environmentally beneficial with lower costs of CSJ production from the juice of higher initial brix contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Nu:

Nusselt number

Pr:

Prandtl number for vapour

Prl :

Prandtl number for liquid

Gr:

Grashof number

\({\mathcalligra{q}}\) :

Heat flux utilization rate (W m2 s1)

HTC:

Heat transfer coefficient (W m2 °C1)

Temp.:

Temperature (°C)

h c,s :

Convective HTC for sensible heating, (W m2 °C1)

h e,s :

Evaporative HTC for sensible heating, (W m2 °C1)

\({U}_{\mathrm{s}}\) :

Overall heat transfer coefficient for sensible heating, (W m2 °C1)

h c,p :

Convective HTC for pool boiling (W m2 °C1)

h e,p :

Evaporative HTC for pool boiling (W m2 °C1)

\({U}_{\mathrm{p}}\) :

Overall heat transfer coefficient for pool boiling (W m2 °C1)

\(e\) :

Thickness of pot base (m)

\(k\) :

Thermal conductivity of pot material (W m1 °C1)

\({Q}_{\mathrm{s}}\) :

Actual heat transfer required during sensible heating (W)

\({Q}_{\mathrm{p}}\) :

Actual heat transfer required during pool boiling (W)

\({\mu }_{\mathrm{l}}\) :

Viscosity of liquid (kg m1 s1)

\({\rho }_{\mathrm{l}}\) :

Density of saturated liquid (kg m3)

\({h}_{\mathrm{fg}}\) :

Enthalpy of vaporization (J kg1)

\({T}_{\mathrm{a}}\) :

Ambient temp. (°C)

\({T}_{\mathrm{j}}\) :

Juice temp. (°C)

\({T}_{\mathrm{js}}\) :

Temp. of juice surface (°C)

\({T}_{\mathrm{s}}\) :

Temp. pot bottom surface (°C)

\({T}_{\mathrm{sw}}\) :

Temp. of side wall (°C)

\({T}_{\mathrm{sat}}\) :

Saturation temp. of sugarcane juice (°C)

\({T}_{\mathrm{v}}\) :

Vapor temp. (°C)

\({U}_{\mathrm{b}}\) :

Overall heat transfer coefficient for pool boiling of sugarcane juice

m e :

Mass of water evaporated (g)

γ :

Relative humidity (%)

X c :

Space between juice surface and glass cover (m)

K v :

Thermal conductivity (W m1 °C1)

λ :

Latent heat (J kg1)

λ evp :

Latent heat of evaporation = 2430 kJ kg1

t :

Time (s)

A :

Area of basin (m2)

\(\dot{r}\) :

Evaporation rate (g min1)

\(\sigma\) :

Surface tension of sugarcane juice (W m1)

\({q}_{\mathrm{nucleate}}\) :

Nucleate boiling heat flux (W m2)

OIHS:

Open induction heating system

NCS:

Non-centrifugal sugar

SERS:

Sustainable energy recovery system

CSJ:

Concentrated sugarcane juice

C, \({C}_{\mathrm{sf}}\), n :

Experimental constants

°B:

Brix contents

References

  1. Anwar SI. Improving thermal efficiency of open pan jaggery furnaces—a novel concept. Indian J Sugarcane Technol. 2014;29:32–4.

    Google Scholar 

  2. Kumar R, Kumar M. Upgradation of jaggery production and preservation technologies. Renew Sustain Energy Rev. 2018;96:167–80. https://doi.org/10.1016/j.rser.2018.07.053.

    Article  Google Scholar 

  3. Anwar SI. Fuel and energy saving in open pan furnace used in jaggery making through modified juice boiling/concentrating pans. Energy Convers Manag. 2010;51:360–4. https://doi.org/10.1016/j.enconman.2009.09.033.

    Article  Google Scholar 

  4. Kumar R, Kumar M. Performance evaluation of a modified jaggery making plant: a comparative study. J Food Process Eng. 2021;44:e13712. https://doi.org/10.1111/jfpe.13712.

    Article  CAS  Google Scholar 

  5. Kumar R, Kumar M. Thermoeconomic analysis of a modified jaggery making plant. Heat Transf. 2021;50:4871–91. https://doi.org/10.1002/htj.22107.

    Article  Google Scholar 

  6. Tyagi SK, Kamboj S, Himanshu, Tyagi N, Narayanan R, Tyagi VV. Technological advancements in jaggery-making processes and emission reduction potential via clean combustion for sustainable jaggery production: an overview. J Environ Manag. 2022;301:113792. https://doi.org/10.1016/J.JENVMAN.2021.113792.

    Article  CAS  Google Scholar 

  7. Tyagi SK, Tyagi N, Himanshu H, Kamboj S, Agarwal KK, Sharma U, Tyagi VV. Emission reduction and fuel-saving potentials in jaggery industry via cleaner combustion. Int J Ambient Energy. 2021;43:4728–43. https://doi.org/10.1080/01430750.2021.1914726.

    Article  CAS  Google Scholar 

  8. Tiwari GN, Kumar S, Prakash O. Study of heat and mass transfer from sugarcane juice for evaporation. Desalination. 2003;159:81–96. https://doi.org/10.1016/S0011-9164(03)90047-6.

    Article  CAS  Google Scholar 

  9. Kumar M, Kasana KS, Kumar S, Prakash O. Energy requirements in manufacture of khoa under closed condition. Int J Mech Eng Res Dev. 2011;1:33–40.

    CAS  Google Scholar 

  10. Kumar M, Prakash O, Kasana KS. An experimental study on pool boiling of milk. Heat Transf Res. 2011;40:159–70. https://doi.org/10.1002/htj.20336.

    Article  Google Scholar 

  11. Tiwari GN, Prakash O, Kumar S. Evaluation of convective heat and mass transfer for pool boiling of sugarcane juice. Energy Convers Manag. 2004;45:171–9. https://doi.org/10.1016/S0196-8904(03)00143-2.

    Article  CAS  Google Scholar 

  12. Marcelo D, Yacila PV, La Madrid Olivares R. Experimental analysis of the pool boiling phenomenon of sugarcane juice. Appl Mech Mater. 2015;789–790:489–95. https://doi.org/10.4028/www.scientific.net/amm.789-790.489.

    Article  Google Scholar 

  13. Villar P, Marcelo D, Saavedra R, La Madrid R. An experimental study of heat transfer in pool boiling of sugarcane juice. JP J Heat Mass Transf. 2016;13:445–64. https://doi.org/10.17654/hm013040445.

    Article  CAS  Google Scholar 

  14. Kumar M. Forced convection drying of Khoa: a heat desiccated milk product. J Eng Technol. 2014;4:110–4. https://doi.org/10.4103/0976-8580.141182.

    Article  Google Scholar 

  15. Kumar M, Kumar S, Prakash O, Kasana K. Evaporative heat transfer coefficients during sensible heating of milk, SAMRIDDHI A. J Phys Sci Eng Technol. 2011;3:1–6.

    Google Scholar 

  16. Kumar M, Kasana K, Prakash O. Experimental study on heat and mass transfer for heating milk. J Energy S Afr. 2011;22:53.

    Google Scholar 

  17. Pioro IL. Experimental evaluation of constants for the Rohsenow pool boiling correlation. Int J Heat Mass Transf. 1999;42:2003–13. https://doi.org/10.1016/S0017-9310(98)00294-4.

    Article  CAS  Google Scholar 

  18. Kumar M, Kumar S, Prakash O, Kasana KS. Pool boiling of milk in a stainless steel pot under closed condition. Int J Curr Res. 2011;3:94–9.

    Google Scholar 

  19. da Silva DR, Crespi MS, Ribeiro CA, Capela JMV. Thermal decomposition kinetics of sugarcane mills wastes. J Therm Anal Calorim. 2018;131:811–22. https://doi.org/10.1007/s10973-017-6270-z.

    Article  CAS  Google Scholar 

  20. Kumar M, Prakash O, Kasana KS. Experimental investigation on natural convective heating of milk. J Food Process Eng. 2012;35:715–26. https://doi.org/10.1111/J.1745-4530.2010.00620.X.

    Article  Google Scholar 

  21. Buchholz M, Lüttich T, Auracher H, Marquardt W. Experimental investigation of local processes in pool boiling along the entire boiling curve. Int J Heat Fluid Flow. 2004;25:243–61. https://doi.org/10.1016/j.ijheatfluidflow.2003.11.020.

    Article  CAS  Google Scholar 

  22. Grewal R, Kumar M. An experimental study on solar evaporation of sugarcane juice. Heat Transf. 2021;50:8378–402. https://doi.org/10.1002/htj.22281.

    Article  Google Scholar 

  23. Chaudhary R, Yadav A. Experimental investigation of solar cooking system based on evacuated tube solar collector for the preparation of concentrated sugarcane juice used in jaggery making. Environ Dev Sustain. 2021;23:647–63. https://doi.org/10.1007/s10668-020-00601-8.

    Article  Google Scholar 

  24. Grewal R, Kumar M. Comparative study on stepped solar distillers internally loaded with different masses of phase change material. Int J Energy Res. 2022;46:12948–62. https://doi.org/10.1002/er.8071.

    Article  CAS  Google Scholar 

  25. Grewal R, Kumar M. Investigations on effect of mass of phase change material on sugarcane juice concentration and distillate production in a stepped solar system. J Energy Storage. 2022;52:104878. https://doi.org/10.1016/j.est.2022.104878.

    Article  Google Scholar 

  26. Grewal R, Kumar M. A comprehensive review on stepped solar still and induction heating applications. Mater Today Proc. 2022;56:2696–703. https://doi.org/10.1016/j.matpr.2021.09.376.

    Article  Google Scholar 

  27. Rudnev V, Loveless D, Cook RL. Handbook of induction heating. 2nd ed. Boca Raton: CRC Press; 2017. https://doi.org/10.1201/9781315117485.

    Book  Google Scholar 

  28. Lucía O, Maussion P, Dede E, Burdio J. Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Trans Ind Electron. 2013;61:2509–20.

    Article  Google Scholar 

  29. Grewal R, Kumar M. Assessment of a solar powered sustainable energy recovery system for cleaner production of concentrated sugarcane juice. Sustain Energy Technol Assess. 2022;52:102271. https://doi.org/10.1016/j.seta.2022.102271.

    Article  Google Scholar 

  30. Anwar SI, Tiwari GN. Evaluation of convective heat transfer coefficient in crop drying under open sun drying conditions. Energy Convers Manag. 2001;42:627–37. https://doi.org/10.1016/S0196-8904(00)00065-0.

    Article  Google Scholar 

  31. Shimpy, Kumar M, Kumar A, Sahdev RK, Manchanda H. Comparison of groundnut drying in simple and modified natural convection greenhouse dryers: thermal, environmental and kinetic analyses. J Stored Prod Res. 2022;98:101990. https://doi.org/10.1016/j.jspr.2022.101990.

    Article  Google Scholar 

  32. Shimpy, Kumar M, Sahdev RK, Manchanda H, Kumar A. Experimental investigations on latent heat storage based modified mixed-mode greenhouse groundnuts drying. J Food Process Preserv. 2022;46:e16725. https://doi.org/10.1111/jfpp.16725.

    Article  CAS  Google Scholar 

  33. Malik MAS, Tiwari GN, Kumar A, Sodha MS. Solar distillation: a practical study of a wide range of stills and their optimum design, construction and performance, 1st edn. Oxford: Pergamon Press. 1982. https://www.osti.gov/etdeweb/biblio/6028832.

  34. Kabeel AE, Abdelaziz GB, El-Said EMS. Experimental investigation of a solar still with composite material heat storage: energy, exergy and economic analysis. J Clean Prod. 2019;231:21–34. https://doi.org/10.1016/j.jclepro.2019.05.200.

    Article  Google Scholar 

  35. Datt P. Latent heat of condensation. Encycl Earth Sci Ser. 2011;33:702–70. https://doi.org/10.1007/978-90-481-2642-2_326.

    Article  Google Scholar 

  36. Thakur VK, Gaur MK. Study the effect of CuO nanoparticles on the performance of passive solar still in winter and summer season. Mater Today Proc. 2022;57:2009–17. https://doi.org/10.1016/j.matpr.2021.11.119.

    Article  CAS  Google Scholar 

  37. Yousef MS, Hassan H. Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: a comparative study. Sol Energy. 2019;182:316–31. https://doi.org/10.1016/j.solener.2019.02.042.

    Article  Google Scholar 

  38. Elbar A, Refat A, Hassan H. Energy, exergy and environmental assessment of solar still with solar panel enhanced by porous material and saline water preheating. J Clean Prod. 2020;277:124175. https://doi.org/10.1016/j.jclepro.2020.124175.

    Article  Google Scholar 

  39. Bait O. Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still. J Clean Prod. 2019;212:630–46. https://doi.org/10.1016/j.jclepro.2018.12.015.

    Article  Google Scholar 

  40. Gaur MK, Thakur VK. Experimental analysis of sustainability of passive solar still with nanoparticles operating at various angles of glass cover. Energy Sources Part A Recover Util Environ Eff. 2022;44:5227–45. https://doi.org/10.1080/15567036.2022.2082600.

    Article  CAS  Google Scholar 

  41. Singh K, Samsher A. Material conscious energy matrix and enviro-economic analysis of passive ETC solar still. Mater Today Proc. 2021;38:1–5. https://doi.org/10.1016/j.matpr.2020.05.117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RG contributed to Experimentation, data collection and analysis, writing—original draft preparation. MK contributed to Conceptualization, methodology, supervision, reviewing and editing.

Corresponding author

Correspondence to Mahesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix 1: Parameters used in thermal model for sensible heating

The various parameters used in thermal model for sensible heating are calculated by the below equations [8, 11].

$$P\left( {T_{{\text{j}}} } \right) = \exp \left[ {25.317 - \frac{5144}{{\left( {T_{{\text{j}}} + 273.15} \right)}}} \right]$$
(27)
$$P\left( {T_{{\text{v}}} } \right) = \exp \left[ {25.317 - \frac{5144}{{\left( {T_{{\text{v}}} + 273.15} \right)}}} \right]$$
(28)
$${\text{Gr}}\Pr = \frac{{g \cdot \beta \cdot X_{{\text{c}}}^{3} \cdot \rho^{2} \cdot \Delta T \cdot C_{{\text{v}}} }}{{\mu \cdot K_{{\text{v}}} }}$$
(29)
$$\beta = \frac{1}{{T_{{\text{v }}} + 273.15}}$$
(30)
$$\rho = \frac{353.44}{{T_{{\text{v}}} + 273.15}}$$
(31)
$$\Delta T = T_{{\text{j}}} - T_{{\text{v}}}$$
(32)
$$C_{{\text{v}}} = 999.2 + 0.1434T_{{\text{v}}} + 1.101 \times 10^{ - 4} T_{{\text{v}}}^{2} - 6.7581 \times 10^{ - 8} T_{{\text{v}}}^{3}$$
(33)
$$\mu = 1.718 \times 10^{ - 5} + 4.62 \times 10^{ - 8} T_{{\text{v}}}$$
(34)
$$K_{{\text{v}}} = 0.0244 + 0.7673 \times 10^{ - 4} T_{{\text{v}}}$$
(35)
$$\lambda = 2.4935 \times 10^{6} \times \left[ {1 - 9.4779 \times 10^{ - 4} T_{{\text{v}}} + 1.3132 \times 10^{ - 7} T_{{\text{v}}}^{2} - 4.7974 \times 10^{ - 9} T_{{\text{v}}}^{3} } \right];\;\;{\text{for}}\;\;T_{{\text{v}}} < 70\,^{^\circ } {\text{C}}$$
(36)
$$\lambda = 3.1615 \times 10^{6} \times \left[ {1 - \left( {7.616 \times 10^{ - 4} \times T_{{\text{v}}} } \right)} \right];\;\;{\text{for}}\;\;T_{{\text{v}}} > 70\,^{^\circ } {\text{C}}$$
(37)

Appendix 2: Parameters used in thermal model of heat transfer during pool boiling

The various parameters used in thermal model of heat transfer during pool boiling are evaluated by the below equations [8, 9, 11, 17].

$$\rho_{{\text{l}}} = 1043 + 4.854B - 1.07T_{{\text{j}}}$$
(38)

\(\rho_{{\text{l}}}\) is density of juice at \(T_{{\text{j}}}\) and B is the brix content.

$$\rho_{{\text{v}}} = \frac{353.44}{{\left( {T_{{\text{i}}} + 273.15} \right)}}$$
(39)

where, \(\rho_{{\text{v}}}\) is density of vapor at \(T_{{\text{i}}} = \frac{{T_{{\text{j}}} + T_{{\text{v}}} }}{2}\)

$$h_{{{\text{fg}}}} = c_{{\text{p}}} X_{{\text{w}}}$$
(40)

\(h_{{{\text{fg}}}}\) is enthalpy of vaporization, \(c_{{\text{p}}}\) is specific heat capacity of vapor and \(X_{{\text{w}}}\) is mass of evaporated water content.

Thermal conductivity (\(k_{{\text{l}}}\)), specific heat (\(c_{{{\text{pl}}}}\)), viscosity (\(\mu_{{\text{l}}}\)) of sugarcane juice are evaluated as

$$k_{{\text{l}}} = 0.3815 - 0.0051B + 0.001866T_{{\text{j}}}$$
(41)
$$c_{{{\text{pl}}}} = 2.38 - 0.006T_{{\text{j}}}$$
(42)
$$\mu_{{\text{l}}} = e^{{\left( {11.229 + \frac{3257.5}{{T_{{\text{j}}} }} + 0.07572B} \right)}}$$
(43)

Appendix 3: Environmental analysis of the system [31, 32, 37,38,39,40,41].

$$E_{{\text{m}}} = C_{{\text{Eem }}} M_{{\text{x}}}$$
(44)

where Mx is mass of the material in kg and CEem is embodied energy coefficient in kWh kg−1

$${\text{Daily thermal output}}\; \left( {{\text{TO}}_{{{\text{day}}}} } \right) = \frac{{ m_{{\text{t}}} \lambda }}{{3.6 \times 10^{6} }}$$
(45)

where, \(\lambda\) is the latent heat of vapourization (i.e., \(\lambda\) = 2.43 × 106 J kg−1).

$${\text{Annual energy output}}\;(E_{{\text{a}}} ) = {\text{TO}}_{{{\text{day}}}} S_{{{\text{days}}}}$$
(46)

\(S_{{{\text{days}}}}\) are the operating days for system which is taken as 290 days

$${\text{EPBT}} = \frac{{E_{{\text{m}}} }}{{E_{{\text{a}}} }}$$
(47)
$${\text{CO}}_{2} {\text{ emission/year}} = \frac{{ 0.98 \times E_{{\text{m}}} }}{a}$$
(48)

where \(a\) is the lifespan of the designed system taken as 30 years.

$${\text{CO}}_{2} \;{\text{mitigation}} \;\left( {{\text{CO}}_{{\text{m}}} } \right) = 2.042 \times \left( { aE_{{\text{a}}} {-} E_{{\text{m}}} } \right)$$
(49)
$${\text{CCE}} = {\text{C}}_{{{\text{CCE}}}} \times {\text{CO}}_{{\text{m}}}$$
(50)

In Eq. (50), the cost of carbon credit (\({\text{C}}_{{{\text{CCE}}}}\)) is taken as $15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grewal, R., Kumar, M. Induction heating of sugarcane juice: thermo-enviro-economic analyses. J Therm Anal Calorim 148, 7939–7950 (2023). https://doi.org/10.1007/s10973-023-12268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12268-0

Keywords

Navigation