Skip to main content
Log in

Thermal research on the melt⁃cast explosive of 3-azido-1,3-dinitroazetidine (ADNAZ)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The systematical thermal behaviors of 3⁃azido⁃1,3⁃dinitroazetidine (ADNAZ) was investigated in this research and compared with those of 1,3,3-trinitroazetidine (TNAZ). The results showed that ADNAZ has a low melting temperature at 78 °C. The final mass loss of ADNAZ under atmospheric pressure is 88.2%. Compared to TNAZ, the replacement of gem-dinitro group with gemazidonitro group makes greatly reduce vapor pressure, melting point as well as the thermal decomposition temperature. The in-situ FTIR spectroscopy of ADNAZ proved the strength of nitro group decreases faster than that of azide group, and a carbonyl group (C=O) was formed at the quaternary carbon center on the azetidine skeleton during heating process. TG/DSC–FTIR–MS quadruple technology was applied, finding small molecular fragments from ADNAZ’s thermolysis includes H2 (m/z = 2), H2O (m/z = 18), CN (m/z = 26), HCN (m/z = 27), N2 (m/z = 28), NO (m/z = 30), C2H2O (m/z = 42), HN3 (m/z = 43), CO2 (m/z = 44), and NO2 (m/z = 46). A detailed decomposition mechanism was proposed based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Viswanath DS, Ghosh TK, Boddu VM. Emerging energetic materials: synthesis, physicochemical, and detonation properties. Dordrecht: Springer; 2018. https://doi.org/10.1007/978-94-024-1201-7.

    Book  Google Scholar 

  2. Shukla MK, Boddu VM, Steevens JA, et al. Energetic materials: from cradle to grave. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-59208-4.

    Book  Google Scholar 

  3. Klapötke TM. Chemistry of high-energy materials. Berlin: De Gruyter; 2015.

    Book  Google Scholar 

  4. Dalinger IL, Shakhnes AK, Monogarov KA, et al. Novel high energetic pyrazoles: N-fluorodinitromethyl and N-(difluoroamino)dinitromethyl derivatives. Mendeleev Commun. 2015;25:429–31. https://doi.org/10.1016/j.mencom.2015.11.010.

    Article  CAS  Google Scholar 

  5. Agrawal JP, Hodgson RD. Organic chemistry of explosives. Chichester: Wiley; 2007. https://doi.org/10.1002/9780470059364.

    Book  Google Scholar 

  6. Politzar PA, Murray JS. Energetic materials, path 2: detonation, combustion. Netherlands: Elsevier; 2003.

    Google Scholar 

  7. Pepekin VI, Matyushin YN, Khisamutdinov GH, et al. Thermochemical properties of α-azidopolynitroalkanes and the dissociation energy of C–N3 bonds in organic azides. Khim Fiz. 1993;12:1399–403.

    Google Scholar 

  8. Zhou J, Zhang JL, Wang BZ, et al. Recent synthetic efforts towards high energy density materials: How to design high-performance energetic structures? FirePhysChem. 2022;2:83–139. https://doi.org/10.1016/j.fpc.2021.09.005.

    Article  Google Scholar 

  9. Khisamutdinov GK, Slovetsky VI, Golub YM, et al. α-Azidopolynitroalkanes. synthesis and vibrational spectra. Russ Chem Bull. 1997;46:324–7. https://doi.org/10.1007/BF02494372.

    Article  CAS  Google Scholar 

  10. Xue Q, Bi FQ, Zhai LJ, et al. Synthesis, characterization and performance of promising energetic materials based on 1,3-oxazinane. ChemPlusChem. 2019;84:913–8. https://doi.org/10.1002/cplu.201900322.

    Article  CAS  PubMed  Google Scholar 

  11. Liu ZR. Review and prospect of thermal analysis technology applied to study thermal properties of energetic materials. FirePhysChem. 2021;1:129–38. https://doi.org/10.1016/j.fpc.2021.05.002.

    Article  Google Scholar 

  12. Sućeska M, Rajić M, Zeman S, et al. 1,3,3-trinitroazetidine (TNAZ). Study of thermal behaviour. Part II. J Energ Mater. 2001;19:241–54. https://doi.org/10.1080/07370650108216128.

    Article  Google Scholar 

  13. Nedel’ko V, Korsunskii B, Makhova N, et al. Thermal decomposition of 1,3,3-trinitroazetidine in the gas phase, solution, and melt. Russ Chem Bull. 2010;58:2028–34. https://doi.org/10.1007/s11172-009-0277-y.

    Article  CAS  Google Scholar 

  14. Li JZ, Zhang GF, Fan XZ, et al. Thermal behavior of 1,3,3-trinitroazetidine. J Anal Appl Pyrolysis. 2006;76:1–5. https://doi.org/10.1016/j.jaap.2005.04.008.

    Article  CAS  Google Scholar 

  15. Zhang GQ. Technological Synthesis and application advance of 1,3,3-trinitroazetidine (TNAZ). Chin J Energ Mater. 2022;10:174–7.

    Google Scholar 

  16. Katorov DV, Rudakov GF, Ladonin AV. Preparation of low-melting compositions based on 1,3,3-trinitroazetideine. Cent Eur J Energ Mater. 2007;4:125–33.

    CAS  Google Scholar 

  17. Jia SY, Zhang HH, Zhang JR, et al. A melt-cast explosive 3-azido-1,3-dinitroazetidine (AzDNAZ) with gem-azidonitro of novel energetic group: synthesis and performance. Chin J Energ Mater. 2020;28:685–9. https://doi.org/10.11943/CJEM2019231.

    Article  CAS  Google Scholar 

  18. Liu ZR. Thermal analysis of energetic materials (Chinese Edition). Beijing: Defense Industry Press; 2008.

    Google Scholar 

  19. Sikder N, Sikder AK, Bulakh NR, et al. 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. J Hazard Mater. 2004;113:35–43. https://doi.org/10.1016/j.jhazmat.2004.06.002.

    Article  CAS  PubMed  Google Scholar 

  20. Huang H, Shi Y, Yang J. Thermal characterization of the promising energetic material TKX-50. J Therm Anal Calorim. 2015;121:705–9. https://doi.org/10.1007/s10973-015-4472-9.

    Article  CAS  Google Scholar 

  21. Chen GJ, Fu XY, Tang AQ. Ab initio studies on the thermolysis of azetidine. Chin J Chem. 1992;10:193–9. https://doi.org/10.1002/cjoc.19920100301.

    Article  CAS  Google Scholar 

  22. Oyumi Y, Brill TB. Thermal decomposition of energetic materials 4. High-rate, in situ, thermolysis of the four, six, and eight membered, oxygen-rich, gem-dinitroalkyl cyclic nitramines, TNAZ, DNNC, and HNDZ. Combust Flame. 1985;62:225–31. https://doi.org/10.1016/0010-2180(85)90148-8.

    Article  CAS  Google Scholar 

  23. Klaeboe P, Nielsen CJ, Priebe H, et al. The vibrational spectra, molecular structure and conformations of organic azides. I A survey J Mol Struct. 1986;141:161–72. https://doi.org/10.1016/0022-2860(86)80320-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 21805226 and No.21805223).

Author information

Authors and Affiliations

Authors

Contributions

JZ, JZ and BZ designed and carried out the thermal research. SJ prepared the ADNAZ sample. LQ and ZM carried out the analysis of the gaseous thermal decomposition products. QP carried out the in-situ FTIR spectroscopy analysis.

Corresponding authors

Correspondence to Junlin Zhang or Bozhou Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhang, J., Jia, S. et al. Thermal research on the melt⁃cast explosive of 3-azido-1,3-dinitroazetidine (ADNAZ). J Therm Anal Calorim 148, 7661–7668 (2023). https://doi.org/10.1007/s10973-023-12246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12246-6

Keywords

Navigation