Skip to main content
Log in

The critical limits of thermophysical properties defining the optimum heat transfer coefficient in case of spray quenching from high temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

By altering the thermophysical properties of the coolant in the favourable direction of heat transfer, augmentation is achieved in the case of spray cooling in transition boiling. The above-stated thermophysical properties were varied, and the critical limit of maximum heat transfer was determined. In the current work, using various additives, the above stated is achieved, and the maximum enhancement limit is determined. Initially, dropwise experiments are conducted in a transition boiling temperature regime to determine the heat transfer coefficient variation mechanism. Thereafter, spray cooling experiments were performed. In the current work, three independent variables, which are part of Weber, Reynold and Prandtl numbers, are formed: ρ/µ, ρ/σ and cpµ/k. The basis of selection was to identify only the role of thermophysical properties of the heat transfer coefficient. From the variation in HTC with ρ/σ, it is concluded that HTC shows a decreasing trend in the ρ/σ range of 10.2–14, and then again, HTC increases with the rising value of ρ/σ. Finally, after ρ/σ = 20 s2m−3, the HTC does not change significantly, or it can be said that it reaches the plateau region. To check the suitability of the used coolants in fast quenching operations, the cooling parameters such as AHF, CHF and IHFs are compared. From this, it is concluded that the maximum CHF, AHF and IHF are achieved in the case of benzene (1600 ppm)-added water. The analysis of the developed correlations using various techniques shows that the design expert model produces the minimum error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(h\) :

Heat transfer coefficient, W m2 K1

\(h\) v :

Latent heat of vaporisation, J kg1

k :

Thermal conductivity of the coolant, W m1 K1

\(m\) :

Mass of droplet evaporated, kg

\(n\) :

Number of droplets impinging per second, s1

\(q\) :

Surface heat flux, MW m2

\({A}^{^{\prime}}\) :

Heat transfer area of the droplet, m2

\({T}_{\mathrm{f}}\) :

Final temperature of the coolant, °C

T l :

Coolant temperature, °C

T s :

Saturation temperature, °C

T w :

Hot plate temperature, °C

C pl :

Specific heat of the coolant in liquid phase, J kg1 K1

C pv :

Specific heat of the coolant in vapour phase, J kg1 K1

µ :

Viscosity of the coolant, Pa s

θ :

Contact angle of the coolant, degree

ρ :

Density of the coolant, kg m3

σ :

Surface tension of the coolant, mN m1

λ :

Instability length scale, m

AHF:

Average heat flux, MW m2

CHF:

Critical heat flux, MW m2

IHF:

Initial heat flux, MW m2

HTC:

Heat transfer coefficient

DAB:

Diffusivity

NB:

Nucleate boiling

TB:

Transition boiling

References

  1. Boston L, Huang P, Chiarot PR. Effect of nozzle orientation on electrospray cooling. Appl Therm Eng. 2022;210.

  2. Bolleddula DA, Berchielli A, Aliseda A. Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry. Adv Colloid Interface Sci. 2010;159:144–59. https://doi.org/10.1016/j.cis.2010.06.003.

    Article  CAS  PubMed  Google Scholar 

  3. Xu R, Wang G, Jiang P. Spray cooling on enhanced surfaces: a review of the progress and mechanisms. J Electron Packag Trans ASME. 2022;144:14–6.

    Article  Google Scholar 

  4. Jayanthakumaran K. Advanced Technologies [Internet]. Rijeka: IntechOpen; 2009. Available from: https://doi.org/10.5772/165

  5. Zhang T, Mo Z, Xu X, Liu X, Chen H, Han Z, et al. Advanced study of spray cooling: from theories to applications. Energies. 2022;15:9219.

    Article  CAS  Google Scholar 

  6. Yamaguchi T, Nagayama G, Tsuruta T, Jiang Y, Maruyama S, Okuyama K, et al. Topics on boiling: from fundamentals to applications. Boil Res Adv. 2017;443–777.

  7. Bernardin JD, Mudawar I. Film boiling heat transfer of droplet streams and sprays. Int J Heat Mass Transf. 1997;40:2579–93.

    Article  CAS  Google Scholar 

  8. Cui Q, Chandra S, McCahan S. The effect of dissolving salts in water sprays used for quenching a hot surface: part 2—Spray cooling. J Heat Transfer. 2003;125:326–32.

    Article  CAS  Google Scholar 

  9. Liu ZH, Qiu YH. Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface. Heat Mass Transf und Stoffuebertragung. 2007;43:699–706.

    Article  CAS  Google Scholar 

  10. Breitenbach J, Roisman IV, Tropea C. Heat transfer in the film boiling regime: single drop impact and spray cooling. Int J Heat Mass Transf. 2017;110:34–42.

    Article  Google Scholar 

  11. Sarkar I, Jha JM, Priyanka V, Pal SK, Chakraborty S. Application of binary mixed surfactant additives in jet impingement cooling of a hot steel plate. Heat Mass Transf und Stoffuebertragung. 2019;55:3413–25.

    Article  CAS  Google Scholar 

  12. Luo J, Wu SY, Xiao L, Zhou SY, Chen ZL. Transient boiling heat transfer mechanism of droplet impacting heated cylinder. Int J Mech Sci. 2022;233:107675.

    Article  Google Scholar 

  13. Rini DP, Chen RH, Chow LC. Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling. J Heat Transfer. 2002;124:63–72.

    Article  CAS  Google Scholar 

  14. Liang G, Mudawar I. Review of drop impact on heated walls. Int J Heat Mass Transf. 2017;106:103–26. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.031.

    Article  Google Scholar 

  15. Pais MR, Chow LC, Mahefkey ET. Surface roughness and its effects on the heat transfer mechanism in spray cooling. Am Soc Mech Eng Heat Transf Div HTD. 1989;119:51–9.

    CAS  Google Scholar 

  16. Martínez-Galván E, Antón R, Ramos JC, Khodabandeh R. Influence of surface roughness on a spray cooling system with R134a. Part I: Heat transfer measurements. Exp Therm Fluid Sci. 2013;46:183–90.

    Article  Google Scholar 

  17. Muthukrishnan S, Tan X, Srinivasan V. High-efficiency spray cooling of rough surfaces with gas-assist atomisation. Appl Therm Eng. 2023;221:119764.

    Article  Google Scholar 

  18. Wang B, Liu Z, Zhang B, Xia Y, Wang Z, Wang G. Effect of nanoparticle type and surfactant on heat transfer enhancement in spray cooling. J Therm Sci. 2020;29:708–17.

    Article  Google Scholar 

  19. Bostanci H, Rini DP, Kizito JP, Singh V, Seal S, Chow LC. High heat flux spray cooling with ammonia: Investigation of enhanced surfaces for HTC. Int J Heat Mass Transf. 2014;75:718–25.

    Article  CAS  Google Scholar 

  20. Aksoy YT, Zhu Y, Eneren P, Koos E, Vetrano MR. The impact of nanofluids on droplet/spray cooling of a heated surface: a critical review. Energies. 2021;14:80.

    Article  CAS  Google Scholar 

  21. Ravikumar SV, Jha JM, Haldar K, Pal SK, Chakraborty S. Surfactant-based Cu–water nanofluid spray for heat transfer enhancement of high temperature steel surface. J Heat Transfer. 2015. https://doi.org/10.1115/1.4029815/444630/SurfactantBased-CuWater-Nanofluid-Spray-for-Heat.

    Article  Google Scholar 

  22. Mehralizadeh A, Shabanian SR, Bakeri G. Experimental and modeling study of heat transfer enhancement of TiO2/SiO2 hybrid nanofluids on modified surfaces in pool boiling process. Eur Phys J Plus. 2020;135:796.

    Article  CAS  Google Scholar 

  23. Castanet G, Chaze W, Caballina O, Collignon R, Lemoine F. Transient evolution of the heat transfer and the vapor film thickness at the drop impact in the regime of film boiling. Phys Fluids. 2018;30:122109.

    Article  Google Scholar 

  24. Selvam RP, Hamilton M, Silk EA. Spray cooling modeling: Liquid film thickness effect on heat transfer. AIP Conf Proc. 2007;880:110–7.

    Article  CAS  Google Scholar 

  25. Liu N, Zhan TJ, Zhang YW, Yin XM, Zhang LX. Experimental investigation of comprehensive effects of surfactant and inclined mode on spray cooling heat transfer. Int J Therm Sci. 2019;136:457–66.

    Article  CAS  Google Scholar 

  26. Bandaru SVR, Villanueva W, Konovalenko A, Komlev A, Thakre S, Sköld P, et al. Upward-facing multi-nozzle spray cooling experiments for external cooling of reactor pressure vessels. Int J Heat Mass Transf. 2020;163:120516. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120516.

    Article  CAS  Google Scholar 

  27. Lily, Pati AR, Panda A, Munshi B, Mohapatra SS, Behera A, et al. High mass flux spray quenching on an inclined surface A novel methodology for the attainment of enhanced uniform cooling with unaltered surface morphology in transition boiling regime. Int J Heat Mass Transf. 2019;131:11–30. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.116.

    Article  CAS  Google Scholar 

  28. Kumar P, Paras, Bhattacharyya S, Chakraborty S. Investigation of spray cooling in an inclined nozzle-plate configuration with varying coolant temperature. Exp Heat Transf. 2022;1-18

  29. Ravikumar SV, Jha JM, Mohapatra SS, Sinha A, Pal SK, Chakraborty S. Experimental study of the effect of spray inclination on ultrafast cooling of a hot steel plate. Heat Mass Transf und Stoffuebertragung. 2013;49:1509–22. https://doi.org/10.1007/s00231-013-1190-3.

    Article  Google Scholar 

  30. Wu H, Lu X, Ding Y, YH. Film thickness and droplet impact angle effects on spray cooling heat transfer. Int J Heat Mass Transf.

  31. Proper JP, Kulacki FA. Pool boiling of a dilute emulsion: surfactant effect on heat transfer. Int Commun Heat Mass Transf. 2021;128:105586.

    Article  CAS  Google Scholar 

  32. Ravikumar KP, Sahoo A, Mohapatra SS. Enhancement of upward facing spray cooling by benzene added water. J Therm Anal Calorim [Internet]. Springer International Publishing; 2023; https://doi.org/10.1007/s10973-023-12035-1

  33. Kumar P, Chaurasia CK, Das S, Bhattacharyya S, Chakraborty S. Synthesis, characterisation and application of SiO2 and CuO nanofluid in spray cooling of hot steel plate. Heat Mass Transf. 2023;1-28

  34. Issa RJ. Multiphase spray cooling technology in industry. In: Jayanthakumaran K, editor. Adv Technol [Internet]. Rijeka: IntechOpen; 2009. Available from: https://doi.org/10.5772/8217

  35. Putra N, Roetzel W, Das SK. Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf. 2003;46:1237–47. https://doi.org/10.1007/s00231-002-0382-z.

    Article  Google Scholar 

  36. Sajjad U, Hussain I, Sultan M, Mehdi S, Wang CC, Rasool K, et al. Determining the factors affecting the boiling heat transfer coefficient of sintered coated porous surfaces. Sustain. 2021;13:12631.

    Article  CAS  Google Scholar 

  37. Jun S, Kim J, Son D, Kim HY, You SM. Enhancement of Pool boiling heat transfer in water using sintered copper microporous coatings. Nucl Eng Technol. 2016;48:932–40.

    Article  Google Scholar 

  38. Mehralizadeh A, Shabanian SR, Bakeri G. Investigation of boiling heat transfer coefficients of different refrigerants for low fin, Turbo-B and Thermoexcel-E enhanced tubes using computational smart schemes. J Therm Anal Calorim. 2020;141:1221–42.

    Article  CAS  Google Scholar 

  39. Pati AR, Lily, Behera AP, Munshi B, Mohapatra SS. Enhancement of heat removal rate of high mass flux spray cooling by sea water. Exp Therm Fluid Sci 2017;89:19–40. Available from: https://www.sciencedirect.com/science/article/pii/S089417771730208X

  40. Pati ARR, Kumar A, Mohapatra SSS. Upward and downward facing high mass flux spray cooling with additives: a novel technique to enhance the heat removal rate at high initial surface temperature. Heat Mass Transf und Stoffuebertragung Heat and Mass Transfer. 2018;54:1669–80.

    CAS  Google Scholar 

  41. Bhatt NH, Pati AR, Kumar A, Behera A, Munshi B, Mohapatra SS. High mass flux spray cooling with additives of low specific heat and surface tension: a novel process to enhance the heat removal rate. Appl Therm Eng [Internet]. Elsevier Ltd; 2017;120:537–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359431116322049

  42. Bhatt NH, Lily, Raj R, Varshney P, Pati AR, Chouhan D, et al. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-tween20-water solution at very high initial surface temperature. Int J Heat Mass Transf [Internet]. Elsevier Ltd; 2017;110:330–47. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.094

  43. Pati AR, Mandal S, Dash A, Barik K, Munshi B, Mohapatra SS. Oil-in-water emulsion spray: a novel methodology for the enhancement of heat transfer rate in film boiling regime. Int Commun Heat Mass Transf. 2018;98:96–105. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.006.

    Article  Google Scholar 

  44. Cui M, Yang K, Liu YF, Gao XW. Inverse estimation of transient heat flux to slab surface. J Iron Steel Res Int. 2012;19:13–8.

    Article  Google Scholar 

  45. Beck JV. Surface heat flux determination using an integral method. Nucl Eng Des. 1968;7:170–8.

    Article  Google Scholar 

  46. Yang YT, Hsu PT, Chen CK. A three-dimensional inverse heat conduction problem approach for estimating the heat flux and surface temperature of a hollow cylinder. J Phys D Appl Phys. 1997;30:1326–33.

    Article  CAS  Google Scholar 

  47. Liu FB. Inverse estimation of wall heat flux by using particle swarm optimisation algorithm with Gaussian mutation. Int J Therm Sci. 2012;54:62–9.

    Article  Google Scholar 

  48. Yang YC, Chen WL. A non-linear inverse problem in estimating the heat flux of the disc in a disc brake system. Appl Therm Eng. 2011;31:2439–48.

    Article  Google Scholar 

  49. Gomez CF, van der Geld CWM, Kuerten JGM, Bsibsi M, van Esch BPM. Film boiling in quench cooling with high-temperature jets. Int J Heat Mass Transf. 2021;164:120578.

    Article  Google Scholar 

  50. Trujillo DM, Busby HR. INTEMP—Inverse heat transfer analysis-user’s manual [Internet]. Trucomp Co., Fountain Val. Canada. Fountain Valley, CA; 2003. p. 1–47. Available from: https://sites.google.com/site/trucompp/intemp

  51. Pati AR, Bhatt NH, Das L, Teja S, Nayak S, Kumar A, et al. The discrepancy in the prediction of surface temperatures by inverse heat conduction models for different quenching processes from very high initial surface temperature. Inverse Probl Sci Eng. 2019;27:808–35.

    Article  Google Scholar 

  52. Pati AR, Swain B, Mohapatra SS. The boiling phenomena and their proper identification and discrimination methodology. Sci Rep. 2020;10:1–8. https://doi.org/10.1038/s41598-020-65342-0.

    Article  CAS  Google Scholar 

  53. Lamb H. Hydrodynamics. University Press; 1924.

  54. Mohapatra SS, Ravikumar SV, Jha JM, Singh AK, Bhattacharya C, Pal SK, et al. Ultra fast cooling of hot steel plate by air atomised spray with salt solution. Heat Mass Transf und Stoffuebertragung. 2014;50:587–601. https://doi.org/10.1007/s00231-013-1260-6.

    Article  CAS  Google Scholar 

  55. Ravikumar KP, Sahoo A, Mohapatra SS. Enhancement of spray cooling by modify spray orientation and coolant characteristics. Int J Thermofluids [Internet]. Elsevier; 2023 [cited 2023 Mar 27];100342. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666202723000617

  56. Pati AR, Mohapatra SS. Low mass flux laminar jet cooling with different additives: an enhancement-cum-comparative study. Heat Transf Eng [Internet]. 2022;1–16. Available from: https://www.tandfonline.com/action/journalInformation?journalCode=uhte20

  57. Alshqirate AAZS, Tarawneh M, Hammad M. Dimensional analysis and empirical correlations for heat transfer and pressure drop in condensation and evaporation processes of flow inside micropipes: case study with carbon dioxide (CO2). J Braz Soc Mech Sci Eng. 2012;34:89–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KPR collected the experimental data, analysing, software utilisation, writing the original draft and reviewing. AS contributed to analysing, supervising and reviewing. SSM contributed to design, conceptualisation, data curation, writing the original draft, supervising and reviewing. All the authors thoroughly verified the final manuscript and approved.

Corresponding author

Correspondence to Kollati Prudhvi Ravikumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, K.P., Sahoo, A. & Mohapatra, S.S. The critical limits of thermophysical properties defining the optimum heat transfer coefficient in case of spray quenching from high temperature. J Therm Anal Calorim 148, 7919–7938 (2023). https://doi.org/10.1007/s10973-023-12245-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12245-7

Keywords

Navigation