Skip to main content
Log in

Thermal cure kinetics of cold-setting melamine–urea–formaldehyde resins with high melamine content

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Even though cure kinetics of melamine–urea–formaldehyde (MUF) resins with low melamine contents (0–20 mass%) and high-temperature curing have been studied, research on the thermal cure kinetics of cold-setting MUF resins with relatively high melamine content (20–40 mass%) is limited. Therefore, this study reports thermal cure kinetics of cold-setting MUF resins synthesized with three melamine contents, using differential scanning calorimetry. A model-fitting method (Kissinger), three model-free kinetic methods (Friedman (FR), Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS)), and a nonlinear isoconversional (or Vyazovkin) method were employed to theoretically estimate the cure kinetics of cold-setting MUF resins with high melamine content. The results of Kissinger analysis provided reliable activation energy (Ea) which was also comparable with those of isoconversional analysis. As the degree of conversion (α) increased, the activation energy (Eα) of MUF resins decreased, regardless of melamine content. However, the activation energy (Ea), isoconversional activation energy (Eα), and the peak temperature (Tp) increased as the melamine content increased. Two methods such as KAS and Vyazovkin methods were reliable in estimating their cure kinetics based on R2 values and cure kinetic parameters. Analysis of the cure kinetics showed that all melamine contents MUF resins followed an nth-order reaction (OR (n > 1)) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

References

  1. Baxter GF, Kreibich RE. Fast-curing phenolic adhesive system. Forest Prod. J. 1973;23(1):17–22.

  2. Mansouri HR, Pizzi A, Fredon E. Honeymoon fast-set adhesives for glulam and finger joints of higher natural materials content. Eur J Wood Wood Prod. 2009;67(2):207–10. https://doi.org/10.1007/s00107-009-0312-6.

    Article  CAS  Google Scholar 

  3. Pizzi A, Cameron FA. Fast-set adhesives for glulam [Phenol-resorcinol-formaldehyde, structural finger-jointing]. For Prod J (USA). 1985;34:61–8.

    Google Scholar 

  4. Dunky M. Urea-formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes. 1998;18(2):95–107. https://doi.org/10.1016/S0143-7496(97)00054-7.

    Article  CAS  Google Scholar 

  5. Zhang J, Wang X, Zhang S, Gao Q, Li J. Effects of melamine addition stage on the performance and curing behavior of melamine-urea-formaldehyde (MUF) resin. BioResources. 2013;8(4):5500–14. https://doi.org/10.15376/biores.8.4.5500-5514.

    Article  Google Scholar 

  6. Pizzi A, Mittal KL. Handbook of adhesive technology. 2nd ed. New York: Marcel Dekker, Inc.; 2003.

    Google Scholar 

  7. Mantanis GI, Athanassiadou ET, Barbu MC, Wijnendaele K. Adhesive systems used in the European particleboard, MDF and OSB industries*. Wood Mat Sci Eng. 2018;13(2):104–16. https://doi.org/10.1080/17480272.2017.1396622.

    Article  CAS  Google Scholar 

  8. Sauget A, Pizzi A, Guillot A, Godart S, Apolit R, Mezzina M. Performance of MUF honeymoon adhesive for glulam. Eur J Wood Wood Prod. 2014;72:697–8. https://doi.org/10.1007/s00107-014-0819-3.

    Article  CAS  Google Scholar 

  9. Young No B, Kim MG. Evaluation of melamine-modified urea-formaldehyde resins as particleboard binders. J Appl Polym Sci. 2007;106(6):4148–56. https://doi.org/10.1002/app.26770.

    Article  CAS  Google Scholar 

  10. Young No B, Kim MG. Syntheses and properties of low-level melamine-modified urea-melamine-formaldehyde resins. J Appl Polym Sci. 2004;93(6):2559–69. https://doi.org/10.1002/app.20778.

    Article  CAS  Google Scholar 

  11. Shiau DW, Eric S. Low formaldehyde emission urea-formaldehyde resins containing a melamine additive. U.S.A patent No. 4,536,245. 1985. https://patents.google.com/patent/US4536245A/en.

  12. Wibowo ES, Park BD. Enhancing adhesion of thermosetting urea-formaldehyde resins by preventing the formation of H-bonds with multi-reactive melamine. J Adhes. 2022;98(3):257–85. https://doi.org/10.1080/00218464.2020.1830069.

    Article  CAS  Google Scholar 

  13. Kim M, Park B-D, Hong SI. Effect of synthesis parameters of cold-setting melamine-urea-formaldehyde resins on the adhesion in wood bonding. J Adhes Sci Technol. 2021;35(21):2375–90. https://doi.org/10.1080/01694243.2021.1885902.

    Article  CAS  Google Scholar 

  14. Jeong B, Park B-D, Causin V. Influence of synthesis method and melamine content of urea-melamine-formaldehyde resins to their features in cohesion, interphase, and adhesion performance. J Ind Eng Chem Korean Soc Ind Eng Chem. 2019;79:87–96. https://doi.org/10.1016/j.jiec.2019.05.017.

    Article  CAS  Google Scholar 

  15. Pal AK, Katiyar V. Theoretical and analyzed data related to thermal degradation kinetics of poly (L-lactic acid)/chitosan-grafted-oligo L-lactic acid (PLA/CH-g-OLLA) bionanocomposite films. J Data Br. 2017;10:304–11. https://doi.org/10.1016/j.dib.2016.11.100.

    Article  Google Scholar 

  16. Borchardt HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc. 1957;79(1):41–6.

    Article  CAS  Google Scholar 

  17. Dhar P, Vangala SPK, Tiwari P, Kumar A, Katiyar V. Thermal degradation kinetics of poly (3-hydroxybutyrate)/cellulose nanocrystals based nanobiocomposite. J Thermodyn Catal. 2014;5(2):1000134. https://doi.org/10.4172/2157-7544.1000134.

    Article  CAS  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  19. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):11–9. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  20. Muraleedharan K, Alikutty P, Abdul Mujeeb VM, Sarada K. Kinetic studies on the thermal dehydration and degradation of chitosan and citralidene chitosan. J Polym Environ. 2015;23:1–10. https://doi.org/10.1007/s10924-014-0665-8.

    Article  CAS  Google Scholar 

  21. Díaz-Celorio E, Franco L, Márquez Y, Rodríguez-Galán A, Puiggalí J. Thermal degradation studies on homopolymers and copolymers based on trimethylene carbonate and glycolide units. Thermochim Acta. 2012;528:23–31. https://doi.org/10.1016/j.tca.2011.11.006.

    Article  CAS  Google Scholar 

  22. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402. https://doi.org/10.1002/(SICI)1096-987X(199702)18:3%3c393::AID-JCC9%3e3.0.CO;2-P.

    Article  CAS  Google Scholar 

  23. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6(1):183–95. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  24. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83. https://doi.org/10.1002/1096-987X(20010130)22:2%3c178::AID-JCC5%3e3.0.CO;2-%23.

    Article  CAS  Google Scholar 

  25. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–76. https://doi.org/10.1016/S0040-6031(03)00144-8.

    Article  CAS  Google Scholar 

  26. Gollkerl SV, Luss D. Analysis of activation energy of grouped parallel reactions. AIChE J. 1972;18(2):277–82. https://doi.org/10.1002/aic.690180205.

    Article  Google Scholar 

  27. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sect A, Phys Chem. 1966;70(6):487–523. https://doi.org/10.6028/jres.070A.043.

    Article  CAS  Google Scholar 

  28. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  29. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6(24):639–42. https://doi.org/10.1002/app.1962.070062406.

    Article  CAS  Google Scholar 

  30. Akahira T, Sunose T. Transactions of joint convention of four electrical institutes. Rep Res, Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  31. Murray P, White J. Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. Trans Br Ceram Soc. 1955;54:204–38.

    CAS  Google Scholar 

  32. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9. https://doi.org/10.1038/201068a0.

    Article  CAS  Google Scholar 

  33. Wibowo ES, Park B-D. Cure kinetics of low-molar-ratio urea-formaldehyde resins reinforced with modified nanoclay using different kinetic analysis methods. Thermochim Acta. 2020;686:178552. https://doi.org/10.1016/j.tca.2020.178552.

    Article  CAS  Google Scholar 

  34. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28(2):95–101. https://doi.org/10.1002/(SICI)1097-4601(1996)28:2%3c95::AID-KIN4%3e3.0.CO;2-G.

    Article  CAS  Google Scholar 

  35. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. Amsterdam: Elsevier; 1980.

    Google Scholar 

  36. Sestak J. Thermophysical properties of solids. Amsterdam: Elsevier; 1984.

    Google Scholar 

  37. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36(1):42–5. https://doi.org/10.1021/ci950062m.

    Article  CAS  Google Scholar 

  38. Siimer K, Kaljuvee T, Christjanson P. Thermal behaviour of urea-formaldehyde resins during curing. J Therm Anal Calorim. 2003;72(2):607–17. https://doi.org/10.1023/A:1024590019244.

    Article  CAS  Google Scholar 

  39. Cai X, Riedl B, Wan H, Zhang SY, Wang X-M. A study on the curing and viscoelastic characteristics of melamine–urea–formaldehyde resin in the presence of aluminium silicate nanoclays. Compos A Appl Sci Manuf. 2010;41(5):604–11. https://doi.org/10.1016/j.compositesa.2010.01.007.

    Article  CAS  Google Scholar 

  40. Nuryawan A, Park B-D, Singh AP. Comparison of thermal curing behavior of liquid and solid urea-formaldehyde resins with different formaldehyde/urea mole ratios. J Therm Anal Calorim. 2014;118:397–404. https://doi.org/10.1007/s10973-014-3946-5.

    Article  CAS  Google Scholar 

  41. Lubis MAR, Park B-D. Modification of urea-formaldehyde resin adhesives with oxidized starch using blocked pMDI for plywood. J Adhes Sci Technol. 2018;32(24):2667–81. https://doi.org/10.1080/01694243.2018.1511075.

    Article  CAS  Google Scholar 

  42. Jeong B, Park B-D. Effect of molecular weight of urea–formaldehyde resins on their cure kinetics, interphase, penetration into wood, and adhesion in bonding wood. Wood Sci Technol. 2019;53:665–85. https://doi.org/10.1007/s00226-019-01092-1.

    Article  CAS  Google Scholar 

  43. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–32. https://doi.org/10.1002/marc.200600404.

    Article  CAS  Google Scholar 

  44. Patel A, Maiorana A, Yue L, Gross RA, Manas-Zloczower I. Curing kinetics of biobased epoxies for tailored applications. Macromolecules. 2016;49(15):5315–24. https://doi.org/10.1021/acs.macromol.6b01261.

    Article  CAS  Google Scholar 

  45. Kandelbauer A, Wuzella G, Mahendran A, Taudes I, Widsten P. Model-free kinetic analysis of melamine-formaldehyde resin cure. Chem Eng J. 2009;152(2–3):556–65. https://doi.org/10.1016/j.cej.2009.05.027.

    Article  CAS  Google Scholar 

  46. Xia Y, Huang Y, Li Y, Liao S, Long Q, Liang J. LaPO4: Ce, Tb, Yb phosphor—synthesis and kinetics study for thermal process of precursor by Vyazovkin, OFW, KAS, Starink, and Mastplosts methods. J Therm Anal Calorim. 2015;120:1635–43. https://doi.org/10.1007/s10973-015-4548-6.

    Article  CAS  Google Scholar 

  47. Joseph A, Bernardes CES, Druzhinina AI, Varushchenko RM, Nguyen TY, Emmerling F, et al. Polymorphic phase transition in 4′-hydroxyacetophenone: equilibrium temperature, kinetic barrier, and the relative stability of Z ′ = 1 and Z ′ = 2 forms. Cryst Growth Des. 2017;17(4):1918–32. https://doi.org/10.1021/acs.cgd.6b01876.

    Article  CAS  Google Scholar 

  48. Gao X, Jiang L, Xu Q. Experimental and theoretical study on thermal kinetics and reactive mechanism of nitrocellulose pyrolysis by traditional multi kinetics and modeling reconstruction. J Hazard Mater. 2020;386:121645. https://doi.org/10.1016/j.jhazmat.2019.121645.

    Article  CAS  PubMed  Google Scholar 

  49. Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128(1):335–48. https://doi.org/10.1007/s10973-016-5962-0.

    Article  CAS  Google Scholar 

  50. Bonilla J, Salazar RP, Mayorga M. Kinetic triplet of Colombian sawmill wastes using thermogravimetric analysis. Heliyon. 2019;5(10):e02723. https://doi.org/10.1016/j.heliyon.2019.e02723.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fong MJB, Loy ACM, Chin BLF, Lam MK, Yusup S, Jawad ZA. Catalytic pyrolysis of Chlorella vulgaris Kinetic and thermodynamic analysis. Bioresour Technol. 2019;289:121689. https://doi.org/10.1016/j.biortech.2019.121689.

    Article  CAS  PubMed  Google Scholar 

  52. da Silva JCG, Alves JLF, de Galdino Araujo WV, Andersen SLF, de Sena RF. Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Manag. 2018;72:265–73. https://doi.org/10.1016/j.wasman.2017.11.034.

    Article  CAS  PubMed  Google Scholar 

  53. Sbirrazzuoli N, Girault Y, Elégant L. Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3—peak maximum evolution methods and isoconversional methods. Thermochim Acta. 1997;293(1–2):25–37. https://doi.org/10.1016/S0040-6031(97)00023-3.

    Article  CAS  Google Scholar 

  54. Flynn JH. The isoconversional method for determination of energy of activation at constant heating rates: corrections for the Doyle approximation. J Therm Anal. 1983;27:95–102. https://doi.org/10.1007/BF01907325.

    Article  CAS  Google Scholar 

  55. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69. https://doi.org/10.1016/0040-6031(92)85118-F.

    Article  Google Scholar 

  56. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11(3):445–7. https://doi.org/10.1007/BF01903696.

    Article  Google Scholar 

  57. Lascano D, Quiles-Carrillo L, Balart R, Boronat T, Montanes N. Kinetic analysis of the curing of a partially biobased epoxy resin using dynamic differential scanning calorimetry. Polymers. 2019;11(3):391. https://doi.org/10.3390/polym11030391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Korea Forestry Promotion Institute (Grant No. 2023485B10-2325-AA01).

Funding

This study was funded by the Korea Forestry Promotion Institute, 2023485B10-2325-AA01, Byung-Dae Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Dae Park.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Park, BD. Thermal cure kinetics of cold-setting melamine–urea–formaldehyde resins with high melamine content. J Therm Anal Calorim 148, 6407–6422 (2023). https://doi.org/10.1007/s10973-023-12167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12167-4

Keywords

Navigation