Skip to main content
Log in

Energy, exergy, and economic (3E) analysis of air bubbles injection into plate heat exchangers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to experimentally investigate the impact of air bubbles injection on the combined energetic, exergetic, and economic performance characteristics of a plate heat exchanger (P-HEX) with a parallel fluid flow configuration. Cold water, with a fixed volume flow rate of 290 LPH, is mixed with air bubbles (flow rates ranging from 150 to 840 LPH) before entering the P-HEX. The hot water was studied in seven different volume flow rates (280 to 880 LPH) and kept at 50 °C. The results show remarkable increments in the enhancement factors of the number of transfer units and effectiveness, up to 33.17 and 5.5%, respectively, compared to single-phase flow. Furthermore, cold-water side injection boosts the maximum enhancement in the number of transfer units by 2.68 folds, compared to hot water side injection. The maximum entropy generation rate is dampened by 2.45 folds when injecting the cold-water stream instead of the hot one, and the maximum system efficiency is increased from 96.9 to 97.6%. The thermo-economic assessment further highlights the potential of air injection as one of the promising techniques for P-HEXs’ performance, where a maximum specific net profit of 0.45 USD kJ−1 is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All analyzed data in this study are described in the article itself or its electronic annex.

Abbreviations

ABI:

Air bubble injection

CWB:

Cold-water bench

CWS:

Cold-water side/stream

EGM:

Entropy generation minimization

HEX:

Heat exchanger

HTR:

Heat transfer rate

HWB:

Hot water bench

HWS:

Hot water side/stream

P-HEX:

Plate heat exchanger

TBL:

Thermal boundary layer

THP:

Thermo-hydraulic performance

\(A\) :

Heat transfer area (m2)

\({A}_{\mathrm{p}}\) :

Plate area (m2)

\(\mathrm{AOT}\) :

Annual operating time (s)

\(\mathrm{AEGN}\) :

Augmentation entropy generation number

\(C\) :

Heat capacity rate (J s1 K1)

\({C}_{\mathrm{p}}\) :

Specific heat capacity (J kg1 K1)

\(\mathrm{CF}\) :

Capital recovery factor (-)

\(\mathrm{EGN}\) :

Entropy generation number (-)

\(\mathrm{EGR}\) :

Entropy generation rate (W K1)

ER:

Effectiveness enhancement ratio (-)

\(\mathrm{Ex}\) :

Exergy (J)

\({\mathrm{Ex}}_{\mathrm{des}}\) :

Exergy destruction rate (W)

\(f\) :

Friction factor (-)

\(h\) :

Heat transfer coefficient (W m2 K1)

\(i\) :

Interest rate (%)

\({I}_{\mathrm{i}}\) :

Initial cost of P-HEX (USD)

\(\mathrm{LMTD}\) :

Logarithmic mean temperature difference (°C)

\(\dot{m}\) :

Mass flow rate (kg s1)

\(N\) :

Number of plates (-)

\(n\) :

Lifetime of P-HEX (years)

\(\mathrm{NP}\) :

Net profit value (USD)

\(\mathrm{Nu}\) :

Nusselt number (-)

\({N}_{\mathrm{t}}\) :

Number of P-HEX plates (-)

\(\mathrm{NTU}\) :

Number of heat transfer units (-)

NR:

NTU enhancement ratio (-)

\(P\) :

Pressure (Pa)

\(\dot{Q}\) :

Heat transfer rate (W)

\(\mathrm{Re}\) :

Reynolds number (-)

\(\mathrm{SV}\) :

P-HEX’s salvage value (USD)

\(T\) :

Temperature (°C)

\(U\) :

Overall heat transfer coefficient (W m2 K1)

\(u\) :

Uncertainty (-)

\(\dot{V}\) :

Flow rate (LPH)

\(\mathrm{WF}\) :

Worth capital factor (-)

\(\Delta P\) :

Pressure losses (Pa)

\(\Delta {E}_{\mathrm{p}}\) :

Gain of thermal exergy (J)

\(\Delta E_{{\text{q}}}\) :

Lost exergy due to friction (J)

\(\varepsilon\) :

Energy effectiveness (-)

\({\varepsilon }_{\mathrm{p}}\) :

Cost of each unit of friction exergy (USD J1)

\({\varepsilon }_{\mathrm{q}}\) :

Cost of each unit of thermal exergy (USD J1)

\({\varepsilon }_{\mathrm{Ex}}\) :

Exergy effectiveness (-)

\({\eta }_{\mathrm{P}}\) :

Net profit per unit transferred heat load (USD kJ1)

\({\eta }_{W-S}\) :

Witte-Shamsundar efficiency (%)

\(\rho\) :

Density of water (kg m3)

\(a\) :

Ambient

\(\mathrm{actual}\) :

Actual

\(\mathrm{air}\) :

Air

\(\mathrm{avg}\) :

Average

\(c\) :

Cold fluid

\(h\) :

Hot fluid

\(i\) :

Inlet or initial

\(\mathrm{max}\) :

Maximum

\(\mathrm{min}\) :

Minimum

\(o\) :

Outlet

\(p\) :

Plate

\(\mathrm{sp}\) :

Single-phase fluid flow

\(t\) :

Total

\(\mathrm{tp}\) :

Two phase fluid flow

References

  1. Hassan MA, Al-Tohamy AH, Kaood A. Hydrothermal characteristics of turbulent flow in a tube with solid and perforated conical rings. Int Commun Heat Mass Transf. 2022;134:106000. https://doi.org/10.1016/j.icheatmasstransfer.2022.106000.

    Article  Google Scholar 

  2. Fadodun OG, Kaood A, Hassan MA. Investigation of the entropy production rate of ferrosoferric oxide/water nanofluid in outward corrugated pipes using a two-phase mixture model. Int J Therm Sci. 2022;178:107598. https://doi.org/10.1016/j.ijthermalsci.2022.107598.

    Article  CAS  Google Scholar 

  3. Hassan MA, Kassem MA, Kaood A. Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert. J Therm Anal Calorim. 2022;147:6847–68. https://doi.org/10.1007/s10973-021-10998-7.

    Article  CAS  Google Scholar 

  4. Pandya NS, Shah H, Molana M, Tiwari AK. Heat transfer enhancement with nanofluids in plate heat exchangers: a comprehensive review. Eur J Mech B/Fluids. 2020;81:173–90.

    Article  Google Scholar 

  5. Abou Elmaaty TM, Kabeel AE, Mahgoub M. Corrugated plate heat exchanger review. Renew Sustain Energy Rev Elsevier Ltd. 2017;70:852–60.

    Article  Google Scholar 

  6. Sundar LS, Punnaiah V, Sharma KV, Chamkha AJ, Sousa ACM. Thermal entropy and exergy efficiency analyses of nanodiamond/water nanofluid flow in a plate heat exchanger. Diam Relat Mater. 2021;120:108648.

    Article  CAS  Google Scholar 

  7. Amiri Delouei A, Atashafrooz M, Sajjadi H, Karimnejad S. The thermal effects of multi-walled carbon nanotube concentration on an ultrasonic vibrating finned tube heat exchanger. Int Commun Heat Mass Transf. 2022;135:106098.

    Article  CAS  Google Scholar 

  8. Amiri Delouei A, Sajjadi H, Atashafrooz M, Hesari M, Ben Hamida MB, Arabkoohsar A. Louvered fin-and-flat tube compact heat exchanger under ultrasonic excitation. Fire. 2022;6:13.

    Article  Google Scholar 

  9. Amiri Delouei A, Sajjadi H, Ahmadi G. Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: experimental investigation. Water Switzerland. 2022. https://doi.org/10.3390/w14244000.

    Article  Google Scholar 

  10. Marouf ZM, Fouad MA, Hassan MA. Experimental investigation of the effect of air bubbles injection on the performance of a plate heat exchanger. Appl Therm Eng. 2022;217:119264.

    Article  Google Scholar 

  11. Lowrey S, Hughes C, Sun Z. Thermal-hydraulic performance investigation of an aluminium plate heat exchanger and a 3D-printed polymer plate heat exchanger. Appl Therm Eng. 2021;194:117060.

    Article  CAS  Google Scholar 

  12. Al Zahrani S, Islam MS, Xu F, Saha SC. Thermal performance investigation in a novel corrugated plate heat exchanger. Int J Heat Mass Transf. 2020;148:119095.

    Article  Google Scholar 

  13. Panday NK, Singh SN. Study of thermo-hydraulic performance of chevron type plate heat exchanger with wire inserts in the channel. Int J Therm Sci. 2022;173:107360.

    Article  CAS  Google Scholar 

  14. Nguyen DH, Kim KM, Nguyen Vo TT, Shim GH, Kim JH, Ahn HS. Improvement of thermal-hydraulic performance of plate heat exchanger by electroless nickel, copper and silver plating. Case Stud Therm Eng. 2021;23:100797.

    Article  Google Scholar 

  15. Abbas A, Lee H, Sengupta A, Wang CC. Numerical investigation of thermal and hydraulic performance of shell and plate heat exchanger. Appl Therm Eng. 2020;167:114705.

    Article  Google Scholar 

  16. Durmuş A, Benli H, Kurtbaş I, Gül H. Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles. Int J Heat Mass Transf. 2009;52:1451–7.

    Article  Google Scholar 

  17. Hassan MA, Hassan MA, Banerjee D, Hegab H. Evolutionary optimization of thermo-physical properties of MWCNT-Fe3O4/water hybrid nanofluid using least-squares support vector regression-based models. Appl Soft Comput. 2022;130:109644. https://doi.org/10.1016/j.asoc.2022.109644.

    Article  Google Scholar 

  18. Zhang J, Zhu X, Mondejar ME, Haglind F. A review of heat transfer enhancement techniques in plate heat exchangers. Renew Sustain Energy Rev. 2019;101:305–28. https://doi.org/10.1016/j.rser.2018.11.017.

    Article  CAS  Google Scholar 

  19. Kumar V, Tiwari AK, Ghosh SK. Application of nanofluids in plate heat exchanger: a review. Energy Convers Manag. 2015;105:1017–36.

    Article  CAS  Google Scholar 

  20. Saleh B, Sundar LS. Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. Int J Therm Sci. 2021;165:106935.

    Article  CAS  Google Scholar 

  21. Ajeeb W, Thieleke da Silva RRS, Murshed SMS. Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger. Appl Therm Eng. 2023;218:119321.

    Article  CAS  Google Scholar 

  22. Göltaş M, Gürel B, Keçebaş A, Akkaya VR, Güler OV, Kurtuluş K, et al. Thermo-hydraulic performance improvement with nanofluids of a fish-gill-inspired plate heat exchanger. Energy. 2022;253:124207.

    Article  Google Scholar 

  23. Niknejadi M, Afrand M, Karimipour A, Shahsavar A, Meghdadi Isfahani AH. Experimental investigation of the hydrothermal aspects of water–Fe3O4 nanofluid inside a twisted tube. J Therm Anal Calorim. 2021;143:801–10.

    Article  CAS  Google Scholar 

  24. Karimi S, Heyhat MM, Isfahani AHM, Hosseinian A. Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger. Heat Mass Transf und Stoffuebertragung. Heat Mass Transf. 2020;56:2325–31.

    Article  CAS  Google Scholar 

  25. Zhao J, Reda SA, Al-Zahrani KS, Kumar Singh P, Talal Amin M, Tag-Eldin E, et al. Hydro-thermal and economic analyses of the air/water two-phase flow in a double tube heat exchanger equipped with wavy strip turbulator. Case Stud Therm Eng. 2022;37:102260.

    Article  Google Scholar 

  26. Zhou X, Bai H, Xu Q, Mansir IB, Ayed H, Abbas SZ, et al. Evaluations on effect of volume fraction of injected air on exergo-economic performance of a shell and tube heat exchanger. Case Stud Therm Eng. 2022;35:101919. https://doi.org/10.1016/j.csite.2022.101919.

    Article  Google Scholar 

  27. Moria H. Compound usage of twisted tape turbulator and air injection for heat transfer augmentation in a vertical straight tube with upward stream. Case Stud Therm Eng. 2021;25:100854.

    Article  Google Scholar 

  28. Marouf ZM, Fouad MA. Combined energetic and exergetic performance analysis of air bubbles injection into a plate heat exchanger: an experimental study. Energies. 2023;16:1164.

    Article  CAS  Google Scholar 

  29. Kitagawa A, Denissenko P, Murai Y. Effect of heated wall inclination on natural convection heat transfer in water with near-wall injection of millimeter-sized bubbles. Int J Heat Mass Transf. 2017;113:1200–11.

    Article  CAS  Google Scholar 

  30. Tsao H, Koch DL. Observations of high Reynolds number bubbles interacting with a rigid wall. Phys Fluids. 1997;9:44–56.

    Article  CAS  Google Scholar 

  31. Donnelly B, O’Donovan TS, Murray DB. Bubble enhanced heat transfer from a vertical heated surface. J Enhanc Heat Transf. 2008;15:159–69.

    Article  Google Scholar 

  32. Cornwell K. The influence of bubbly flow on boiling from a tube in a bundle. Int J Heat Mass Transf. 1990;33:2579–84.

    Article  CAS  Google Scholar 

  33. Houston SD, Cornwell K. Heat transfer to sliding bubbles on a tube under evaporating and non-evaporating conditions. Int J Heat Mass Transf. 1996;39:211–4.

    Article  CAS  Google Scholar 

  34. Donoghue DB, Albadawi A, Delauré YMC, Robinson AJ, Murray DB. Bubble impingement and the mechanisms of heat transfer. Int J Heat Mass Transf. 2014;71:439–50.

    Article  Google Scholar 

  35. Balzán MA, Sanders RS, Fleck BA. Bubble formation regimes during gas injection into a liquid cross flow in a conduit. Can J Chem Eng. 2017;95:372–85. https://doi.org/10.1002/cjce.22680.

    Article  CAS  Google Scholar 

  36. Sadighi Dizaji H, Jafarmadar S, Abbasalizadeh M, Khorasani S. Experiments on air bubbles injection into a vertical shell and coiled tube heat exchanger; exergy and NTU analysis. Energy Convers Manag. 2015;103:973–80. https://doi.org/10.1016/j.enconman.2015.07.044.

    Article  Google Scholar 

  37. Moosavi A, Abbasalizadeh M, Sadighi DH. Optimization of heat transfer and pressure drop characteristics via air bubble injection inside a shell and coiled tube heat exchanger. Exp Therm Fluid Sci. 2016;78:1–9. https://doi.org/10.1016/j.expthermflusci.2016.05.011.

    Article  Google Scholar 

  38. Ghashim SL, Flayh AM. Experimental investigation of heat transfer enhancement in heat exchanger due to air bubbles injection. J King Saud Univ Eng Sci. 2021;33:517–24. https://doi.org/10.1016/j.jksues.2020.06.006.

    Article  Google Scholar 

  39. Ghashim SL. Study effect of bubble size on drag reduction. 10th PARIS Int Conf Adv Sci Eng Technol. Paris, France: Universal Researchers; 2018.

  40. Baqir AS, Mahood HB, Kareem AR. Optimisation and evaluation of NTU and effectiveness of a helical coil tube heat exchanger with air injection. Therm Sci Eng Prog. 2019;14:100420. https://doi.org/10.1016/j.tsep.2019.100420.

    Article  Google Scholar 

  41. FOETH. Tranter GLP-008 PI - Plate heat exchanger [Internet]. 2022 [cited 2022 Mar 13]. https://www.foeth.com/en/heat-exchangers/plate-heat-exchangers/tranter-glp-008-pi-plate-heat-exchanger-016h038#

  42. Sinaga N, Khorasani S, Sooppy Nisar K, Kaood A. Second law efficiency analysis of air injection into inner tube of double tube heat exchanger. Alex Eng J. 2021;60:1465–76.

    Article  Google Scholar 

  43. Khorasani S, Moosavi A, Dadvand A, Hashemian M. A comprehensive second law analysis of coil side air injection in the shell and coiled tube heat exchanger: an experimental study. Appl Therm Eng. 2019;150:80–7. https://doi.org/10.1016/j.applthermaleng.2018.12.163.

    Article  Google Scholar 

  44. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  45. Pandey SD, Nema VK. An experimental investigation of exergy loss reduction in corrugated plate heat exchanger. Energy. 2011;36:2997–3001.

    Article  Google Scholar 

  46. Attalla M, Maghrabie HM. Investigation of effectiveness and pumping power of plate heat exchanger with rough surface. Chem Eng Sci. 2020;211:115277.

    Article  CAS  Google Scholar 

  47. Andrzejczyk R, Muszynski T, Kozak P. Experimental investigation on straight and u-bend double tube heat exchanger with active and passive enhancement methods. Grądziel S, Łopata S, Sobota T, Zima W, editors. MATEC Web Conf. 2018;240:02001. https://doi.org/10.1051/matecconf/201824002001

  48. Yilmaz M, Sara O, Karsli S. Performance evaluation criteria for heat exchangers based on second law analysis. Exergy An Int J. 2001;1:278–94.

    Article  Google Scholar 

  49. Bejan A. Advanced engineering thermodynamics. 4th ed. Hoboken, New Jersey: Wiley; 2016. https://doi.org/10.1002/9781119245964.

    Book  Google Scholar 

  50. Tiwari AK, Ghosh P, Sarkar J. Combined energy and exergy analysis of a corrugated plate heat exchanger and experimental investigation. Int J Exergy. 2014;15:395–411.

    Article  Google Scholar 

  51. Witte LC, Shamsundar N. A thermodynamic efficiency concept for heat exchange devices. J Eng Gas Turbines Power. 1983;105:199–203.

    Article  Google Scholar 

  52. Bejan A. Entropy generation optimization: The method of thermodynamic optimization of finite-size systems and finite-time processes. 1st ed. Boca Raton: CRC Press Inc.; 1995.

    Google Scholar 

  53. Ham J, Kim J, Cho H. Theoretical analysis of thermal performance in a plate type liquid heat exchanger using various nanofluids based on LiBr solution. Appl Therm Eng. 2016;108:1020–32. https://doi.org/10.1016/j.applthermaleng.2016.07.196.

    Article  CAS  Google Scholar 

  54. Khorasani S, Dadvand A. Effect of air bubble injection on the performance of a horizontal helical shell and coiled tube heat exchanger: an experimental study. Appl Therm Eng. 2017;111:676–83. https://doi.org/10.1016/j.applthermaleng.2016.09.101.

    Article  CAS  Google Scholar 

  55. Buscher S. Visualization and modelling of flow pattern transitions in a cross-corrugated plate heat exchanger channel with uniform two-phase distribution. Int J Heat Mass Transf. 2019;144:118643.

    Article  Google Scholar 

  56. Cao Y, Nguyen PT, Jermsittiparsert K, Belmabrouk H, Alharbi SO, Khorasani MS. Thermal characteristics of air-water two-phase flow in a vertical annularly corrugated tube. J Energy Storage. 2020;31:101605. https://doi.org/10.1016/j.est.2020.101605.

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

ZMM helped in conceptualization, methodology, software, validation, formal analysis, investigation, data curation, visualization, writing—original draft, writing—review and editing, resources. MAH contributed to conceptualization, formal analysis, visualization, writing—original draft, writing—review & editing, supervision. MAF was involved in writing—review and editing, supervision.

Corresponding author

Correspondence to Zakaria M. Marouf.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 86 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marouf, Z.M., Hassan, M.A. & Fouad, M.A. Energy, exergy, and economic (3E) analysis of air bubbles injection into plate heat exchangers. J Therm Anal Calorim 148, 6311–6325 (2023). https://doi.org/10.1007/s10973-023-12143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12143-y

Keywords

Navigation