Skip to main content
Log in

Application of spherical ultrafine CuO@AP with core–shell in AP/HTPB composite solid propellant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to improve the mechanical and combustion properties of composite solid propellant, the CuO@AP with core–shell structure was prepared by solvent–nonsolvent recrystallization method, and it was applied to AP/HTPB composite solid propellant. The thermal decomposition properties, sensitivity properties and tensile properties of CuO@AP propellant were studied and compared with ultrafine AP propellant, ultrafine spherical AP propellant and the mixture of CuO and AP (CuO/AP) propellant. The results show that the Ea of ultrafine spherical AP propellant is 8.16% lower than that of ultrafine AP propellant with the same particle size, and the rate constant increases by 13.64%; the Ea of the CuO@AP propellant is 23.63% lower than that of CuO/AP propellant with ultrafine AP of the same particle size, and the rate constant increases by 172.7%. What’s more, the catalytic effect of CuO@AP is obviously better than that of CuO/AP. The impact sensitivity of ultrafine spherical AP propellant is 29.61% lower than that of ultrafine AP propellant with the same particle size, and the εb is increased by 51.35%. The impact sensitivity of the CuO@AP propellant is 25.38% lower than that of CuO/AP propellant with ultrafine AP of the same particle size, and the εb is increased by 63.76%. The above shows that the CuO@AP composite particles with core–shell structure have potential application prospects in AP/HTPB propellant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang PF, Yang B, Li R, et al. Ti3C2 MXene: a reactive combustion catalyst for efficient burning rate control of ammonium perchlorate based solid propellant. Carbon. 2022;186:678–87. https://doi.org/10.1016/j.carbon.2021.10.069.

    Article  CAS  Google Scholar 

  2. Kim KH, Kim CK, Yoo JC, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants. J Propuls Power. 2011;27:822–7. https://doi.org/10.2514/1.B34099.

    Article  Google Scholar 

  3. Dennis C, Bojko B. On the combustion of heterogeneous AP/HTPB composite propellants: a review. Fuel. 2019;254:115646. https://doi.org/10.1016/j.fuel.2019.115646.

    Article  CAS  Google Scholar 

  4. Kumari A, Mehilal S, Jain MK, Jain BB. Nano-ammonium perchlorate: preparation, characterization, and evaluation in composite propellant formulation. J Energ Mater. 2013;31(3):192–202. https://doi.org/10.1080/07370652.2012.694576.

    Article  CAS  Google Scholar 

  5. Jain S, Mehilal M, Nandagopal S, et al. Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Def Scie J. 2009;59:294. https://doi.org/10.14429/dsj.59.1523.

    Article  Google Scholar 

  6. Fong CW, Smith RF. The relationship between plateau burning behavior and ammonium perchlorate particle size in HTPB-AP composite propellants. Combust Flame. 1987;67:235–47. https://doi.org/10.1016/0010-2180(87)90099-X.

    Article  CAS  Google Scholar 

  7. Zhang ZZ, Yu HJ, Guo XD, et al. Application of spheroidal ultrafine AP in AP-CMDB propellant. Chin J Explos Propellants. 2020;43:424–7.

    Google Scholar 

  8. Wang JY, Yang ZL. Experimental study on the effect of non-spherical particles on steady combustion in nano-aluminized propellant in air. Mater Res Express. 2019;6:115054. https://doi.org/10.1088/2053-1591/ab46e1.

    Article  CAS  Google Scholar 

  9. Wang X, Buckmaster J, Jackson TL. Burning of ammonium-perchlorate ellipses and spheroids in fuel binder. J propuls power. 2006;22:764–8. https://doi.org/10.2514/1.15739.

    Article  Google Scholar 

  10. Vara JA, Dave PN. Metal oxide nanoparticles as catalyst for thermal behavior of AN based composite solid propellant. Chem Phys Lett. 2019;730:600–7. https://doi.org/10.1016/j.cplett.2019.06.048.

    Article  CAS  Google Scholar 

  11. Sherif Elbasuney M, Yehia, M. Correction to: ferric oxide colloid: a novel nano‑catalyst for solid propellants. J Inorg Organomet Polym Mater. 2021;31(6):2713–2713. https://doi.org/10.1007/s10904-020-01827-9.

    Article  CAS  Google Scholar 

  12. Zhang M, Zhao FQ, Wang Y, et al. Evaluation of graphene-ferrocene nanocomposite as multifunctional combustion catalyst in AP-HTPB propellant. Fuel. 2021;2:121229. https://doi.org/10.1016/j.fuel.2021.121229.

    Article  CAS  Google Scholar 

  13. Dey A, Athar J, Varma P, et al. Graphene-iron oxide nanocomposite (GINC): an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. Rsc Adv. 2015;5:1950–60. https://doi.org/10.1039/C4RA10812D.

    Article  CAS  Google Scholar 

  14. Maggi F, Dossi S, Paravan C, et al. Iron oxide as solid propellant catalyst: a detailed characterization. Acta Astronaut. 2019;158:416–24. https://doi.org/10.1016/j.actaastro.2018.07.037.

    Article  CAS  Google Scholar 

  15. Sherif Elbasuney M, Yehia MG, Zaky MR. MWNTs coated with CuO particles: a novel nano-catalyst for solid propellants. J Inorg Organomet Polym Mater. 2019;29(6):2064–71. https://doi.org/10.1007/s10904-019-01165-5.

    Article  CAS  Google Scholar 

  16. Liu YF, Jin SH, Yang HT, et al. Application of 3D energetic metal-organic frameworks containing Cu as the combustion catalyst to composite solid propellant. Combust Flame. 2021;225:57–64. https://doi.org/10.1016/j.combustflame.2020.10.035.

    Article  CAS  Google Scholar 

  17. Elbasuney S, Yehia M. Ferric oxide colloid: a novel nano-catalyst for solid propellants. J Inorg Organomet. 2020;30:706–13. https://doi.org/10.1007/s10904-019-01339-1.

    Article  CAS  Google Scholar 

  18. Pang WQ, De Luca LT, Fan XZ, et al. Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. Combust Sci Technol. 2016;188:315–28. https://doi.org/10.1080/00102202.2015.1083986.

    Article  CAS  Google Scholar 

  19. Amin BU, Yu H, Wang L, et al. Recent advances on ferrocene-based compounds and polymers as a burning rate catalysts for propellants. J Organomet Chem. 2020;921:121368. https://doi.org/10.1016/j.jorganchem.2020.121368.

    Article  CAS  Google Scholar 

  20. Kohga M. Burning characteristics and thermochemical behavior of AP/HTPB composite propellant using coarse and fine AP particles. Propell Explos Pyrot. 2011;36:57–64. https://doi.org/10.1002/prep.200900088.

    Article  CAS  Google Scholar 

  21. Vara JA, Dave PN, Chaturvedi S. Investigating catalytic properties of nanoferrites for both AP and nano-AP based composite solid propellant. Combust Sci Technol. 2021;193:2290–304. https://doi.org/10.1080/00102202.2020.1734582.

    Article  CAS  Google Scholar 

  22. Lu KT, Yang TM, Li JS, et al. Study on the burning characteristics of AP/Al/HTPB composite solid propellant containing nano-sized ferric oxide powder. Combust Sci Technol. 2012;184:2100–16. https://doi.org/10.1080/00102202.2012.703271.

    Article  CAS  Google Scholar 

  23. Krishnan S, Jeenu R. Combustion characteristics of AP/HTPB propellants with burning rate modifiers. J Propuls Power. 1992;8:748–55. https://doi.org/10.2514/3.23545.

    Article  CAS  Google Scholar 

  24. Kishore K, Verneker VRP, Sunitha MR. Action of transition metal oxides on composite solid propellants. AIAA J. 1980;18:1404–5. https://doi.org/10.2514/3.7735.

    Article  CAS  Google Scholar 

  25. Kishore K, Sunitha MR. Effect of transition metal oxides on decomposition and deflagration of composite solid propellant systems: a survey. AIAA J. 1979;17:1118–25. https://doi.org/10.2514/3.61286.

    Article  CAS  Google Scholar 

  26. Hao GZ, Gu YJ, Zhan GP, et al. Catalytic effect of mechanically ground nano-CuO on the thermal decomposition and combustion behaviour of AP/HTPB propellant. Sci Technol Energ Ma. 2020;81:157–63.

    Google Scholar 

  27. Fu TM, Chen WF, Gu ZM, et al. Preparation of CuO modified SBA-15 and applications as catalyst in AP/HTPB solid state propellants. Combust Sci Technol. 2009;181:892–901. https://doi.org/10.1080/00102200902900573.

    Article  CAS  Google Scholar 

  28. De La Fuente JL, Mosquera G, París R. High performance HTPB-based energetic nanomaterial with CuO nanoparticles[J]. J Nanosci Nanotechnol. 2009;9:6851–7. https://doi.org/10.1166/jnn.2009.1579.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Yu XJ, Wang J, et al. Effect of the dispersibility of nano-CuO catalyst on heat releasing of AP/HTPB propellant. J Nanomater. 2011;2011:180896. https://doi.org/10.1155/2011/180896.

    Article  CAS  Google Scholar 

  30. Chen T, Hu YW, Zhang C, et al. Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate. Def Technol. 2021;17:1471–85. https://doi.org/10.1016/j.d.t.2020.08004.

    Article  Google Scholar 

  31. Memon NK, Mcbain AW, Son SF. Graphene oxide/ammonium perchlorate composite material for use in solid propellants. J Propul Power. 2016;32:682–6. https://doi.org/10.2514/1.B35815.

    Article  CAS  Google Scholar 

  32. Qin H, Zha MX, Ma ZY, et al. Controllable fabrication of CuO/ammonium perchlorate (AP) nanocomposites through ceramic membrane anti-solvent recrystallization. Propell Explos Ptrot. 2014;39:694–700. https://doi.org/10.1002/pr.e.p.201300196.

    Article  CAS  Google Scholar 

  33. Yuan JF, Liu JZ, Zhou YN, et al. Thermal decomposition and combustion characteristics of Al/AP/HTPB propellant. J Therm Anal Calorim. 2021;143:3935–44. https://doi.org/10.1007/s10973-020-09297-4.

    Article  CAS  Google Scholar 

  34. Ding L, Zhao FQ, Pan Q, et al. Research on the thermal decomposition behavior of NEPE propellant containing CL-20. J Anal Appl Pyrol. 2016;121:121–7. https://doi.org/10.1016/j.j.a.a.p.2016.07012.

    Article  CAS  Google Scholar 

  35. Zhai JX, Yang RJ, Li JM. Catalytic thermal decomposition and combustion of composite BAMO-THF propellants. Combust Flame. 2008;154:473–7. https://doi.org/10.1016/j.combust.flame.2008.04016.

    Article  CAS  Google Scholar 

  36. Wang QF, Wang L, Zhang XW, et al. Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater. 2009;172:1659–64. https://doi.org/10.1016/j.j.haz.mat.2009.08040.

    Article  CAS  PubMed  Google Scholar 

  37. Kim KH, Kim CK, Yoo JC, et al. Test-based thermal decomposition simulation of AP/HTPB and AP/HTPE propellants. J Propul Power. 2011;27:822–7. https://doi.org/10.2514/1.B34099.

    Article  Google Scholar 

  38. Lu YC, Kuo KK. Thermal decomposition study of hydroxyl-terminated polybutadiene (HTPB) solid fuel. Thermochim acta. 1996;275:181–91. https://doi.org/10.1016/0040-6031(95)02726-2.

    Article  CAS  Google Scholar 

  39. Hao GZ, Zhou X, Liu XL, et al. Catalytic activity of nano-sized CuO on AP-CMDB propellant. J Energ Mater. 2019;37:484–95. https://doi.org/10.1080/07370652.2019.1657203.

    Article  CAS  Google Scholar 

  40. Coffelt C, Olsen D, Miller C, et al. Effect of void positioning on the detonation sensitivity of a heterogeneous energetic material. J Appl Phys. 2022;131:065101. https://doi.org/10.1063/5.0081188.

    Article  CAS  Google Scholar 

  41. Nagendra K, Vijay C, Ramakrishna PA. Temperature sensitivity of composite solid propellants: predictions and experimental verification. Combust Flame. 2020;220:130–2. https://doi.org/10.1016/j.combust.flame.2020.06029.

    Article  CAS  Google Scholar 

  42. Ma XX, Li YX, Hussain I, et al. Core–shell structured nanoenergetic materials: preparation and fundamental properties. Adv Mater. 2020;32:e01291. https://doi.org/10.1002/ad.ma.2020.01291.

    Article  Google Scholar 

  43. Wang ZJ, Qiang HF, Wang G, et al. Tensile mechanical properties and constitutive model for HTPB propellant at low temperature and high strain rate. J Appl Polym Sci. 2015;132:1–9. https://doi.org/10.1002/ap.p.2015.42104.

    Article  CAS  Google Scholar 

  44. Li H, Wang SX, Li M, et al. Experimental research on tensile mechanical properties of NEPE propellant under confining pressure. Propell Explos Ptrot. 2020;45:1769–79. https://doi.org/10.1002/pr.e.p.2019.00412.

    Article  CAS  Google Scholar 

  45. Zhang L, Zhi SJ, Shen ZB. Research on tensile mechanical properties and damage mechanism of composite solid propellants. Propell Explos Ptrot. 2018;43:234–40. https://doi.org/10.1002/pr.e.p.2017.00190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yu, H., Wang, D. et al. Application of spherical ultrafine CuO@AP with core–shell in AP/HTPB composite solid propellant. J Therm Anal Calorim 148, 5235–5246 (2023). https://doi.org/10.1007/s10973-023-12133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12133-0

Keywords

Navigation