Skip to main content

Effects of Dual Oxidizers on the Properties of Composite Solid Rocket Propellants

  • Chapter
  • First Online:
Chemical Rocket Propulsion

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

The microstructures and granular distribution of different oxidizers (AP, HMX, CL-20, GUDN, and ADN) were investigated. Several industrial and research types of hydroxyl-terminated polybutadiene (HTPB)-based composite solid rocket propellants containing different dual oxidizers (with a fraction of AP in the reference formulation replaced by HMX, CL-20, GUDN, or ADN), but featuring the same nominal composition, were prepared. The energetic properties and hazardous properties of the corresponding solid propellants were analyzed. The effects of the kind of dual oxidizers on the strand burning rate and pressure exponent of propellants were investigated. Thermal decomposition and the mechanical properties of propellants were also analyzed. It was shown that AP and prilled ADN particles are approximately ball shaped and more uniform than that of the others, while CL-20 is the most irregular one. The application of different oxidizers to composite solid propellants was revealed as feasible, and samples could be cast in vacuum and cured safely. Compositions with ADN or CL-20 filler show higher performance in terms of specific impulse, heat of explosion, burning rate, and density, but are more sensitive to impact and friction. The mechanical properties of mono-oxidizer AP-based composition (reference composition) are superior to those of the others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADN:

Ammonium dinitramide

AP:

Ammonium perchlorate

cAP:

Coarse ammonium perchlorate

CL-20:

2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane

CP:

Composite propellant

fAP:

Fine ammonium perchlorate

GFP:

Catocene

GUDN:

N-Guanylurea-dinitramide

HMX:

Cyclotetramethylenetetranitramine

HTPB:

Hydroxyl-terminated polybutadiene

RDX:

Cyclotrimethylenetrinitramine

SEM:

Scanning electron microscopy

TATB:

1,3,5-Triamino-2,4,6-trinitrobenzene

TDI:

2,4-Toluene diisocyanate

\( \overline{M} \) :

Mean molecular mass

a :

Pre-exponential factor of steady burning rate law

d 10 :

Particle diameter corresponding to 10 % of cumulative undersize distribution μm

d 50 :

Mean particle diameter μm

d 90 :

Particle diameter corresponding to 90 % of cumulative undersize distribution μm

E :

Elastic modulus MPa

I s :

Gravimetric specific impulse

n :

Pressure exponent of steady burning rate law

p :

Pressure MPa

Q v :

Heat of explosion

r b :

Steady burning rate mm·s−1

Span:

Extent of particle size distribution defined as (d 90d 10)/d 50

T c :

Combustion temperature

T p :

Peak temperature

T peak :

Exothermic peak temperature

I s :

Specific impulse variation with respect to the reference formulation

ε m :

Elongation at maximum tensile strength %

η :

Viscosity Pa·s

ρ :

Density g·cm−3

σ m :

Maximum tensile strength MPa

τ:

Yield stress MPa

References

  1. DeLuca LT, Maggi F, Dossi S, Weiser V, Franzin A, Gettwert V, Heintz T (2013) New energetic ingredients for solid rocket propulsion. Chin J Explos Propellants 36(6):1–14

    Google Scholar 

  2. DeLuca LT, Palmucci I, Franzin A, Weiser V, Gettwert V, Wingborg N, Sjöblom M (2014) New energetic ingredients for solid rocket propulsion. HEMCE-2014, 13–15 Feb, Trivandrum, India

    Google Scholar 

  3. Zhou G, Wang J, He W-D, Wong N-B, Tian A, Li W-K (2002) Theoretical investigation of four conformations of HNIW by B3LYP method. J Mol Struct (Theochem) 589–590:273–280

    Article  Google Scholar 

  4. Babuk VA, Glebov A, Arkhipov VA, Vorozhtsov AB, Klyakin GF, Severini F, Galfetti L, DeLuca LT (2005) Dual – oxidizer solid rocket propellants for low – cost access to space, 10-IWCP. In: DeLuca LT, Sackheim RL, and Palaszeweski BA (eds) Space propulsion. Grafiche GSS, Bergamo, paper 15

    Google Scholar 

  5. Teipel U (2005) Energetic materials, particle processing and characterization. WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim

    Google Scholar 

  6. DeLuca LT, Galfetti L, Signoriello D, Levi, Cianfanelli S, Babuk VA, Sinditskii VP, Klyakin GF, Vorozhtsov AB (2006) Dual – oxidizer solid rocket propellants for green access to space. The 57th International Astronautical Congress (IAC), 2006, At Valencia, Spain, 02–06 Oct 06, Volume: ISBN: 9781605600390, pp. 1–13, IAC-06-C4.3.2.

    Google Scholar 

  7. Wardle RB, Hinshaw JC, Braithwaite P, Rose M, Johnson G, Jones R, Poush K (1996) Synthesis of the caged nitramine HNIW (CL-20). In: Proceedings of 27th national annual conference of ICT. 27.1–27.10. Karlsruhe, June 25–28

    Google Scholar 

  8. Turcotte R, Vachon M, Kwok QSM, Wang R, Jones DEG (2005) Thermal study of HNIW (CL-20). Thermochem Acta 433:105–115

    Article  Google Scholar 

  9. Schroeder M (1981) Thermal decomposition of HMX, vol III. In: Proceedings of the 18th JANNAF combustion meeting, Pasadena, CA, October 19–23

    Google Scholar 

  10. Pinheiro GFM, Lourenco VL, Iha K (2002) Influence of the heating rate in the thermal decomposition of HMX. J Therm Anal 67:445

    Article  Google Scholar 

  11. Herrmann M, Engel W, Eisenreich N (1992) Thermal expansion, transitions, sensitivities, and burning rates of HMX. Prop Explos Pyrotech 17:190

    Article  Google Scholar 

  12. Tian DY (2013) The optimization and design of solid propellant formulations. Defense Industry Press, Beijing

    Google Scholar 

  13. Lei YongPeng, Yang ShiQing, Xu SongLin, Zhang Tong (2007) Progress in insensitive high energetic materials N-Guanylurea dinitramide. Chin J Energetic Mater 15(3):289–293

    Google Scholar 

  14. Talawar MB, Sivabalan R, Anniyappan M, Gore GM, Asthana SN, Gandhe BR (2007) Emerging trends in advanced high energy materials. Combust Explosion Shock Waves 43(1):62–72

    Article  Google Scholar 

  15. Wang BoZhou, Liu Qian, Zhang ZhiZhong et al (2004) Study on properties of FOX-12. Chin J Energetic Mater 12(1):38–39

    Google Scholar 

  16. WeiQiang Pang, HuiXiang Xu, YangLi, XiaoBing Shi (2012) Characteristics of NEPE Propellant with Ammonium Dinitramide (ADN). Adv Mater Res 399–401:279–283

    Google Scholar 

  17. WeiQiangPang, XueZhongFan, WeiZhang, HuiXiangXu, ShuxXinWu, FangLiLiu, WuXiXie, NingYan (2013) Effect of Ammonium Dinitramide (ADN) on the characteristics of Hydroxyl Terminated Polybutadiene (HTPB) based composite solid propellant. J Chem Sci Technol 2(2):53–60

    Google Scholar 

  18. Menke K, Heintz T, Schweikert W, Keicher T, Krause H (2009) Formulation and properties of ADN/GAP propellants. Prop Explos Pyrotech 34:218–230

    Article  Google Scholar 

  19. HuiXiang Xu, LinQuan Liao, Qian Liu, YongHong Li, XiuLun Ran, FengQi Zhao (2008) Properties of prilled Ammonium Dinitramide (ADN) coated by polyurethane binders. Chin J Energetic Mater 16(6):525. (in Chinese)

    Google Scholar 

  20. Johansson M, de Flon J, Petterson A, Wanhatalo M, Wingborg N (2006) Spray prilling of ADN and testing of ADN-based solid propellants. In: 3rd international conference on green propellant for space propulsion and 9th international hydrogen peroxide propulsion conference

    Google Scholar 

  21. Mallory DH (ed) (1960) Development of sensitivity tests at the explosive research laboratory, Report no. 4236. NAVORD, Bruceton

    Google Scholar 

  22. Rinford JH (1981) Technical review to advance techniques in acoustical, electrical and mechanical measurements, Bruel and Kjaer, DK-2850 NAERUM, Denmark, vol 2, p 3

    Google Scholar 

  23. Maggi F, Bandera A, DeLuca LT (2011) Agglomeration in solid rocket propellants: novel experimental and modeling methods. Prop Explos Pyrotech 2:81–98

    Google Scholar 

  24. Nair UR, Asthana SN, Subhananda Rao A, Gandhe BR (2010) Advances in high energy materials. Def Sci J 60(2):137–151

    Article  Google Scholar 

  25. QiLong Yan, XiaoJiang Li, YingWang, WeiHua Zhang, FengQi Zhao (2009) Combustion mechanism of double – base propellant containing nitrogen heterocyclic nitroamines (I): the effect of heat and mass transfer to the burning characteristics. Combust Flame 156:633–641

    Google Scholar 

  26. Hong WL, Tian DY, Liu JH, Wang F (2001) Study on the energy characteristic of propellant containing dinitroazofuroxan. J Solid Rocket Technol 24(2):41–53. (in Chinese)

    Google Scholar 

  27. Bazaki H, Kubota N (2000) Effect of binders on the burning rate of AP composite propellants. Prop Explos Pyrotech 25:312

    Article  Google Scholar 

  28. Chan ML, Turner AD (2007) Insensitive high energy booster propellant suitable for high pressure operation. In: Kuo KK, De Dios Rivera J (eds) Advancements in energetic materials and chemical propulsion. Begell House, ISBN-13: 978-1-56700-239-3, ISBN-10: 1-56700-239-0

    Google Scholar 

  29. Goncalves RFB, Rocco JAFF, Iha K (2013) Thermal decomposition kinetics of aged solid propellant based on ammonium perchlorate-AP/HTPB binder, chapter 14[C], http://dx.doi.org/10.5772/52109//. Applications of calorimetry in a wide context-differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry, Amal Ali Elkordy. InTech, pp 325–342. ISBN 978-953-51-0947

  30. Xiao-Bin Z, Lin-Fa H, Xiao-Ping Z (2000) Thermal decomposition and combustion of GAP/NA/nitrate ester propellants. In: Progress in astronautics and aeronautics, AIAA, vol 185, pp 413

    Google Scholar 

  31. Wingborg N (2014) Status of ADN-based solid propellant development, Paper 07-01; Calabro M Evaluation of the interest of new ADN solid propellants for the vega launch vehicle. Paper 02-03; Weiser W, Franzin A, DeLuca LT, Fischer S, Gettwert V, Kelzenberg S, Knapp S, Raab A, Roth E Burning behavior of ADN solid propellants filled with aluminum and alane, Paper 07-02; Pang WQ Effects of ADN on the properties of nitrate ester plasticized polyether (NEPE) solid rocket propellants, Paper 07-03. Proceedings of 12-IWCP, Politecnico di Milan, Milan, 9–10 June. Milan, Italy

    Google Scholar 

  32. Kuo KK, Achirya R (2012) Fundamentals of turbulent and multiphase combustion. Wiley, Hoboken

    Book  Google Scholar 

  33. Babuk VA, Vasilyev VA, Sviridov VV (2000) Formation of condensed combustion products at the burning surface of solid rocket propellant. In: Yang V, Brill TB, Ren WZ (eds) Solid propellant chemistry, combustion, and motor interior ballistics, progress in aeronautics and astronautics. AIAA, Reston, pp 749–776

    Google Scholar 

  34. Kubota N (2002) Propellants and explosives: thermochemical aspects of combustion. Wiley-VCH Verlag GmbH & Co. KGaA, ISBNs: 3-527-30210-7 (Hardback); 3-527-60050-7 (Electronic)

    Google Scholar 

  35. HeMiaoXiao, RongJieYang, QingPan (2005) Study on thermal decomposition of HNIW by In-situ FTIR Spectroscopy. Chin Energetic Mater 13(2):84–89. (in Chinese), China

    Google Scholar 

  36. Patil DG, Brill TB (1993) Characterization of residue of hexanitrohexaazaisowurtzitane. Combust Flame 92:456–458

    Article  Google Scholar 

  37. Williams GK, Palopoli SF, Brill TB (1994) Thermal decomposition of energetic material 65. Conversation of insensitive explosives (NTO, ANTA) and related compounds to polymeric melone – like cyclic azine burn – rate suppressants. Combust Flame 98(3):197

    Article  Google Scholar 

  38. Nedelko VV, Chukanov NV, Korsounskii BL (2000) Comparative investigation of thermal decomposition of various modifications of Hexanitrohexaazaisowurtzitane (CL-20). Prop Explos Pyrotech 25:255–259

    Article  Google Scholar 

Download references

Acknowledgments

This work is the combined output of several research groups. The authors wish to thank Dr. QiLong Yan, Faculty of Chemical Technology, University of Pardubice, Czech Republic, for useful suggestions in the English statements. Thanks are also due to the colleagues of Science and Technology on Combustion and Explosion Laboratory of Xi’an Modern Chemistry Research Institute for providing many helpful suggestions for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qiang Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pang, W.Q., DeLuca, L.T., Xu, H.X., Fan, X.Z., Zhao, F.Q., Xie, W.X. (2017). Effects of Dual Oxidizers on the Properties of Composite Solid Rocket Propellants. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics