Skip to main content
Log in

Enthalpy entransy dissipation model for liquid dehumidification/regeneration and its application in a two-stage liquid dehumidification system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

From the perspective of thermal-mass coupled transfer capacity, the enthalpy entransy dissipation number was proposed in this paper. Analytical models of liquid dehumidifier/regenerator based on enthalpy dissipation numbers were established and validated by comparing with numerical models and experiments, respectively. Finally, the analytical model was applied to a hybrid connection two-stage liquid dehumidification fresh air (HTLDFA) system by analyzing the effects of enthalpy entransy dissipation numbers and specific heat capacity ratio of the main components on the system performance. Study results of applying in the HTLDFA system show reducing enthalpy entransy dissipation number of each component of that system may decrease the temperature and moisture content of the supply air as well as increase the energy efficiency ratio. The enthalpy entransy dissipation numbers of the dehumidifier Deh Ι, the regenerator Reg Ι and the cooling tower CT Ι of the HTLDFA system have more significant effects on the system. The C*DehIII has the most significant effect on the results on the system performance. The enthalpy entransy dissipation number can be well used for evaluating irreversible loss analysis of liquid dehumidification/regeneration and the optimized HTLDFA system by applying the analytical method provides an effective reference for its industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Area, \({\text{m}}^{2}\)

c p :

Specific heat at constant pressure, kJ kg−1 °C−1

c v :

Specific heat at constant volume, kJ kg−1 °C−1

C* :

The equivalent heat capacity ratio between air and solution in equilibrium state

EER:

Energy efficiency ratio

E T :

Temperature entransy, \({\text{kJ K}}\)

E a,w :

Moisture entransy, \({\text{ g}}^{2}\) s−1 kg−1

E a,h :

Air enthalpy entransy, \({\text{kJ}}^{2}\) s−1 kg−1

E h,s :

Solution enthalpy entransy, kJ s−1

E T * :

Temperature entransy dissipation number

E h * :

Entransy dissipation number

E h,diss :

Combined enthalpy entransy dissipation of solution and air, \({\text{kJ}}^{2}\) s−1 kg−1

h :

Specific enthalpy, \({\text{kJ}}\) kg−1

h a :

Air specific enthalpy, kJ kg−1

h eq :

Equivalent specific enthalpy of air at equilibrium with the surface of the solution, kJ kg−1

h s :

Solution specific enthalpy, kJ kg−1

H :

Total enthalpy, \({\text{ kJ}}\) kg−1

j :

The coefficient

k :

Heat transfer coefficient, \({\text{ kJ}})\) m−2 s−1

k m :

Mass transfer coefficient, \({\text{ kg}}\)m−2 s−1

Le:

Lewis number

M :

Mass flow rate, \({\text{kg}}\) s−1

m de :

Dehumidification rate, \({\text{g}}\) s−1

m re :

Regeneration rate, \({\text{g}}\) s−1

NTU:

Number of heat transfer unit

Q :

Heat flux, \({\text{kW}}\)

R :

Gas–fluid flow ratio

R s :

Ratio of the CaCl2 solution flow entering Deh \({\text{\rm I}}\) to the total flow

t :

Degree Celsius, °C

T :

Kelvin temperature, K

\(\omega\) :

Humidity content of air, \({\text{g}}/{\text{kg}}_{{{\text{dry}},{\text{air}}}}\)

\(\varphi\) :

Relative humidity

\(\xi\) :

Salt concentration of desiccant solution, \({\text{kg}}_{{{\text{salt}}}} /{\text{kg}}_{{{\text{solution}}}}\)

\({\Delta }\) :

The logarithmic mean potential difference between the inlet and outlet

ε:

Effectiveness

\({\updelta }\) :

Unit dimension

\(a\) :

Air

\({\text{aa}}\) :

Air–air sensible heat exchanger

\({\text{amb}}\) :

Ambient

\({\text{CTI}}\) :

The first-grade cooling tower

\({\text{CTII}}\) :

The second-grade cooling tower

\({\text{CTIII}}\) :

Directly evaporative cooler

\({\text{CaCl}}_{2}\) :

Calcium chloride aqueous solution

\({\text{De}}\) :

Dehumidifier

\({\text{Diss}}\) :

Dissipation

\({\text{DehI}}\) :

CaCl2 solution dehumidifer

\({\text{Deh}}\Pi\) :

Dehumidifier of regeneration air of the second-grade dehumidification

DehI\({\Pi}\) :

LiCl solution dehumidifier

\({\text{eq}}\) :

Equilibruim

h:

Enthalpy

\({\text{he}}\) :

Heat exchanger

\({\text{HE}}1\) :

The first-grade solution–solution heat exchanger

\({\text{HE}}2\) :

The second-grade solution–solution heat exchanger

\({\text{HE}}3\) :

The first-grade solution–water heat exchanger

\({\text{HE}}4\) :

The second-grade solution–water heat exchanger

\({\text{in}}\) :

Inlet

\({\text{LiCl}}\) :

Calcium chloride aqueous solution

m:

Mass transfer

min:

Minimum value

\({\text{max}}\) :

Maximum value

\({\text{N}}\) :

Indoor

\({\text{Out}}\) :

Outlet

\({\text{re}}\) :

Regenerator

\({\text{RegI}}\) :

CaCl2 solution regenerator

\({\text{Reg}}\Pi\) :

LiCl solution regenerator

\(s\) :

Solution

\({\text{sat}}\) :

Saturation

\({\text{sup}}\) :

Supply air

\({\text{SH}}1\) :

The first-grade solution–water heater

\({\text{SH}}2\) :

The second-grade solution–water heater

\(w\) :

Water

References

  1. Panchenko V, Kovalev AA, Kovalev AD, Grigoriev SV. Heat recovery of low-grade energy sources in the system of preparation of biogas plant substrates. Int J Energy Optim Eng (IJEOE). 2022;11(1):1–17.

    Google Scholar 

  2. Lawal DU, Qasem N. Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: a critical review. Renew Sustain Energy Rev. 2020;125: 109817.

    Article  Google Scholar 

  3. Wang MT, Zhang J, Liu HW. Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems. Energy. 2022;249: 123765.

    Article  CAS  Google Scholar 

  4. Charara J, Ghaddar N, Ghali K, Zoughaib A, Simonetti M. Cascaded liquid desiccant system for humidity control in space conditioned by cooled membrane ceiling and displacement ventilation. Energy Convers Manage. 2019;195:1212–26.

    Article  Google Scholar 

  5. Ou XH, Cai WJ, He XX, Zhu DQ. Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system. Appl Energy. 2018;220:164–75.

    Article  CAS  Google Scholar 

  6. Wen T, Luo YM, Wang M, She XH. Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate. Renew Energy. 2021;167:841–52.

    Article  CAS  Google Scholar 

  7. Liu J, Liu XH, Zhang T. Analytical solution of heat and mass transfer process in internally cooled liquid desiccant dehumidifiers using refrigerant as cooling medium. Energy Build. 2019;190:1–14.

    Article  Google Scholar 

  8. Woods J, Kozubal E. On the importance of the heat and mass transfer resistances in internally-cooled liquid desiccant dehumidifiers and regenerators. Int J Heat Mass Transf. 2018;122:324–40.

    Article  CAS  Google Scholar 

  9. Guo ZY Zhu HY, Liang XG. Entransy—a physical quantity describing heat transfer ability. Int J Heat Mass Transfer 2007;50(13/14).

  10. Guo ZY. New physical quantities in heat. J Eng Thermophys. 2008;29(1):112–4.

    Google Scholar 

  11. Hu GJ, Guo ZY. The efficiency of heat transfer process. J Eng Thermophys. 2011;32(6):1005–8.

    Google Scholar 

  12. Lazzarin RM, Gasparella A, Longo GA. Chemical dehumidification by liquid desiccants: theory and experiment. Int J Refrig. 1999;22(4):418–9.

    Article  Google Scholar 

  13. Dai YJ, Zhang HF, Yu JD. Mathematical model and analysis on heat and mass transfer of falling film liquid desiccant dehumidification in cross-flow (in Chinese). J Chem Eng. 2001;52(6):510–5.

    CAS  Google Scholar 

  14. Varela RJ, Yamaguchi S, Giannetti N, Saito K, Harada M, Miyauchi H. General correlations for the heat and mass transfer coefficients in an air-solution contactor of a liquid desiccant system and an experimental case application. Int J Heat Mass Transf. 2018;120:851–60.

    Article  CAS  Google Scholar 

  15. Ren CQ, Jiang Y, Zhang YP. Simplified analysis of coupled heat and mass transfer processes in packed bed liquid desiccant-air contact system. Sol Energy. 2005;80(1):121–31.

    Google Scholar 

  16. Babakhani D, Soleymani M. Simplified analysis of heat and mass transfer model in liquid desiccant regeneration process. J Taiwan Institution Chem Energy. 2010;41(3):259–67.

    Article  CAS  Google Scholar 

  17. Song X, Zhang L, Zhang XS. NTUm -based optimization of heat or heat pump driven liquid desiccant dehumidification systems regenerated by fresh air or return air. Energy. 2018;158:269–80.

    Article  Google Scholar 

  18. Liu XH, Jiang Y, Xia JJ, Chang X. Analytical solutions of coupled heat and mass transfer processes in liquid desiccant air dehumidifier/regenerator. Energy Convers Manage. 2006;48(7):2221–32.

    Article  Google Scholar 

  19. Liang CH, Li NF, Huang SM. Entropy and exergy analysis of an internally-cooled membrane liquid desiccant dehumidifier. Energy, 2020;192:116681.1–116681.15.

  20. Xiong ZQ, Dai YJ, Wang RZ. Development of a novel two-stage liquid desiccant dehumidification system assisted by CaCl2 solution using exergy analysis method. Appl Energy. 2010;87(5):1495–504.

    Article  CAS  Google Scholar 

  21. Hu TX, Shen YT, Kwan TH, Gang PA. Absorption chiller waste heat utilization to the desiccant dehumidifier system for enhanced cooling—energy and exergy analysis. Energy. 2022;239: 121847.

    Article  Google Scholar 

  22. Zhang L, Zhai HX, He JY, Yang F, Wang SL. Application of exergy analysis in flue gas condensation waste heat recovery system evaluation. Energies. 2022;15(20):7525–7525.

    Article  Google Scholar 

  23. Khalid Ahmed CS, Gandhidasan P, Zubair SM, Al-Farayedhi AA. Exergy analysis of a liquid-desiccant-based, hybrid air-conditioning system. Energy. 1998;23(1):234–7.

    Article  Google Scholar 

  24. Guan B, Zhang T, Liu J, Liu XH. Exergy analysis and performance improvement of liquid-desiccant deep-dehumidification system: An engineering case study. Energy. 2020;196: 117122.

    Article  Google Scholar 

  25. Wang WH, Cheng XT, Liang XG. Entransy definition and its balance equation for heat transfer with vaporization processes. Int J Heat Mass Transf. 2015;83:536–44.

    Article  Google Scholar 

  26. Wang HR, Liu ZY, Wu HY. Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array. Energy. 2017;138:739–41.

    Article  Google Scholar 

  27. Guo JF, Xu MT. The application of entransy dissipation theory in optimization design of heat exchanger. Appl Therm Eng. 2012;36:227–35.

    Article  CAS  Google Scholar 

  28. Xu YC, Chen Q. An entransy dissipation-based method for global optimization of district heating networks. Energy Build. 2012;48:50–60.

    Article  Google Scholar 

  29. Feng HJ, Cheng LG, Xie ZH, Sun F.R. Constructal optimization for H-shaped multi-scale heat exchanger based on entransy theory. Science China (Technological Sciences), 2013, 56(02):299–307.

  30. Jiang Y, Xie XY, Liu XH. Thermal principles of wet air heat and moisture conversion process. J HV&AC. 2011;41(3):51–64.

    Google Scholar 

  31. Peng DG, Cao Z. Modeling and performance analysis of a hybrid-connected two-stage liquid dehumidification fresh air system based on CaCl2/LiCl double solution. Appl Therm Eng. 2021;199: 117529.

    Article  CAS  Google Scholar 

  32. Chen LG. Progress in entransy theory and its applications. Chin Sci Bull. 2012;57(30):2815–35.

    Google Scholar 

  33. Liu XH. Combined heat and mass transfer characteristic in air handling process using liquid desiccant (in Chinese). Doctor Dissertation. Beijing: Tsinghua University, 2007.

  34. Guo JF, Cheng L, Xu MT. Entransy dissipation number and its application to heat exchanger performance evaluation. Chin Sci Bull. 2009;54(15):2708–13.

    CAS  Google Scholar 

  35. Yang SM, Tao WQ. Heat transfer, 4th Edn. Higher Education Press, Beijing 2006

  36. Bai HY, Zhu J, Chen XJ, Chu JZ, Cui YL, Yan YY. Steady-state performance valuation and energy assessment of a complete membrane-based liquid desiccant dehumidification system. Appl Energy. 2019;258:114082–3.

    Article  Google Scholar 

  37. Chen XY, Liu XH, Li Z, Zhang YP, Jiang Y. Analytical solution of heat and mass transfer in dehumidifier/regenerator of liquid desiccant equipment. Taiyangneng Xuebao/Acta Energ Solaris Sin. 2004;25(4):509–14.

    CAS  Google Scholar 

  38. Fumo N, Goswami DY. Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Sol Energy. 2015;72(4):351–61.

    Article  Google Scholar 

  39. Song X, Zhang L, Zhang XS. Analysis of the temperatures of heating and cooling sources and the air states in liquid desiccant dehumidification systems regenerated by return air. Energy. 2019;168:651–61.

    Article  Google Scholar 

  40. Su BS, Han W, Sui J, Jin HG. Feasibility of a two-stage liquid desiccant dehumidification system driven by low-temperature heat and power. Appl Therm Eng. 2018;128:795–804.

    Article  Google Scholar 

  41. Huang X, Wang H, Liu WH, Ling X. Performance analysis of a multi-stage humidification–dehumidification desalination system with different salinity levels. Energy Convers Manage. 2020;215: 112928.

    Article  CAS  Google Scholar 

  42. Safizadeh MR, Wahed MA, Bongs C, Zaw K, Morgenstern A. Two-stage air-dehumidification system for the tropics—experimental and theoretical analysis of a lab system. Energy Proc. 2014;48:982–90.

    Article  Google Scholar 

  43. Kumar K, Singh A. Assessment of dehumidification performance of non-corrosive desiccant in hybrid liquid desiccant-vapour compression system. Energy Sources Part A Recovery Utilization Environ Effects. 2022;44(3):6909–26.

    Article  CAS  Google Scholar 

  44. Zhang YL, Zhang H, Yang HX, Cheng Y. Counter-crossflow indirect evaporative cooling-assisted liquid desiccant dehumidifier: Model development and parameter analysis. Appl Therm Eng. 2022;217: 119231.

    Article  Google Scholar 

  45. Li WZ, Yin YG, Wang YK. Performance evaluation of a heat pump-driven liquid desiccant dehumidification system integrated with fresh air supply. Energy Build. 2022;275:43–6.

    Article  Google Scholar 

  46. Park JY, Dong HW, Cho HJ, Jeong JW. Energy benefit of a cascade liquid desiccant dehumidification in a desiccant and evaporative cooling-assisted building air-conditioning system. Appl Therm Eng. 2018;147:291–301.

    Article  Google Scholar 

  47. Tomas V, Ming Q, Wang LS, Liu XB, Kyle G, Gao ZM. Review of liquid desiccant air dehumidification systems coupled with heat pump: System configurations, component design, and performance. Energy Build. 2023, 279:112655.

  48. Zhang N, Yin SY, Min L. Model-based optimization for a heat pump driven and hollow fibermembrane hybrid two-stage liquid desiccant air dehumidification system. Appl Energy. 2018;228:12–20.

    Article  CAS  Google Scholar 

  49. Qiu GQ, Riffat SB, Zhu J. Novel liquid regeneration system with solar evacuated tubes and evaporative bed. J Inst Energy. 2008;81(2):92–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51766010), the Knowledge Innovative Team of High-efficient Refrigeration in Nanchang city (2018-CXTD-004) and Special Fund Project for Graduate Innovation of Jiangxi Province of China (YC2021-S139).

Author information

Authors and Affiliations

Authors

Contributions

DP: Concept, Methodology, Inspection, Supervision. YT: Writing original research paper. ZC: Software, Result validation.

Corresponding author

Correspondence to Donggen Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, D., Tang, Y. & Cao, Z. Enthalpy entransy dissipation model for liquid dehumidification/regeneration and its application in a two-stage liquid dehumidification system. J Therm Anal Calorim 148, 5647–5666 (2023). https://doi.org/10.1007/s10973-023-12125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12125-0

Keywords

Navigation