Skip to main content
Log in

Determination of thermochemical properties of lead vanadates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard molar enthalpy of formation \(\left( {\Delta_{\text{f}} H_{{298.15{\text{K}}}}^{^\circ } } \right)\) of five ternary compounds in the Pb–V–O system, namely, PbV2O6 (s), Pb2V2O7 (s), Pb3V2O8 (s), Pb4V2O9 (s) and Pb8V2O13 (s) were determined employing room temperature solution calorimetry and the values obtained are − 1842. 0 ± 1.0, − 2062.4 ± 2.3, − 2183.0 ± 4.0, − 2342.3 ± 3.2, − 3549.0 ± 5.0 kJ mol−1, respectively. The enthalpy increment of these compounds were measured using a high temperature calvet calorimeter in the temperature range of 325–985 K. From the enthalpy increment data, the temperature dependence of molar heat capacities of these compounds was derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie W, Wang N, Qiao Z, Cao Z. Thermodynamic assessment of the PbO–V2O5 system. Calphad. 2016;55:41–6.

    Article  CAS  Google Scholar 

  2. Saddeek YB, Shaaban ER, Aly KA, Sayed IM. Characterization of some lead vanadate glasses. J Alloy Compd. 2009;478:447–52.

    Article  CAS  Google Scholar 

  3. Suárez-Gómez A, Figueroa SJA, Lamas DG, Cezar JC. A crystallization and structural study of the compound Pb2V2O7 synthesized by a facile sol–gel-based chemical route. J Sol-Gel Sci Technol. 2015;75:291–7.

    Article  Google Scholar 

  4. Kalanur SS, Lee YJ, Seo H. Exploring the Synthesis, Band Edge Insights, and Photoelectrochemical Water Splitting Properties of Lead Vanadates. ACS Appl Mater Interfaces. 2021;13:25906–17.

    Article  CAS  PubMed  Google Scholar 

  5. Amadori M (1917) Anhydrous phosphates, arsenates and vanadates of lead, Atti R. Ist. Veneto, 76 .

  6. Viting GPGLM. The phase diagram of lead oxide-vanadium anhydride. Vestnik Mosk Univ Ser Khimiya. 1964;19:88–9.

    CAS  Google Scholar 

  7. Shimohira T, Iwai S, Tagai H. Compound formation and phase relation in the system PbO-V2O5. J Associat, Japan. 1967;75:352–8.

    CAS  Google Scholar 

  8. Gregoire P, Josso D, Garnier P, Calvarin G. Nouveau diagramme de phase pour le système (1–x)V2O5 · xPbO dans le domaine x < 23. J Solid State Chem. 1986;64:225–8.

    Article  CAS  Google Scholar 

  9. Slobodin VAZBV, Kiseleva NV. The vanadium oxide (V2O5)/lead vanadate (Pb2V2O7) system. Zhurnal Neorg Khimii. 1986;31:268–70.

    CAS  Google Scholar 

  10. Blonska-Tabero A, Bosacka M. Comparative studies in subsolidus areas of ternary oxide systems PbO–V2O5–In2O3 and PbO–V2O5–Fe2O3. J Therm Anal Calorim. 2013;113:137–45.

    Article  CAS  Google Scholar 

  11. Hodenberg R. Compounds in the system lead monoxide-phosphorus pentoxide, lead monoxide-arsenic pentoxide and lead monoxide-vanadium pentoxide. Ber Dtsch Keram Ges. 1972;49:243–8.

    Google Scholar 

  12. Sunandana CS. Structure and Cu++ EPR of γ′ Pb3V2O8. Phys Status Solidi A. 1987;101:37–43.

    Article  CAS  Google Scholar 

  13. Isupov NNKVA, Fridberg ID, Zelenkova IE. Antiferroelectric properties of lead orthovanadate. Fiz Tv Tela. 1965;7:1051–6.

    CAS  Google Scholar 

  14. Midorikawa HKM, Sawada A, Ishibashi Y. Ferroelectricity in lead orthovanadate [(Pb3(VO4)2]. J Phys Soc Jpn. 1980;49:1095–7.

    Article  CAS  Google Scholar 

  15. Garnier GCP. Etude Des Phases Ferroelastiques De Pb3V2O8: Determination De La Maille Crystalline De La Phase ~ Ferroelectrique Basse Temperature. Mat Res Bull. 1984;19:407–14.

    Article  CAS  Google Scholar 

  16. Eckstein J, Recker K, Wallrafen F. Studium der phasen in zweistoffsystem PbO-V2O5 durch einkristallzüchtung. J Cryst Growth. 1975;30:276–7.

    Article  CAS  Google Scholar 

  17. Annenkoff PGA, Gregoire P. Polymorphism of lead vanadate oxide (Pb8V2O13), C. R. Seances l’Academie Sci. Ser C: Sci Chim. 1979;288:347–50.

    CAS  Google Scholar 

  18. Dudnik ISKEF. Lead vanadate (Pb8V2O13) and lead phosphate (Pb8P2O13) as new ferroelastic materials. Fiz Tv Tela. 1980;22:1204–6.

    CAS  Google Scholar 

  19. Baggio MARDR, Dedussel H, Polla G. Phase transitions and physical properties of lead vanadate (Pb8V2O13) single crystals. Ferroelectrics. 1984;55:773–6.

    Article  CAS  Google Scholar 

  20. Denisova ADILT, Irtyugo LA, Kargin YF, Denisov VM, Beletskii VV. High-temperature heat capacity and thermodynamic properties of pyrovanadate Pb2V2O7 and orthovanadate Pb3(VO4)2. Dokl Phys Chem. 2016;466:4–7.

    Article  CAS  Google Scholar 

  21. L.H.A. K.K. Kelley, E.G. King, Heats and free energies of formation of vanadates of lead and manganese, in: Bureau of Mines Report 6197, U.S. Dept. of the Interior, 1963.

  22. Yokokawa T, Kleppa OJ. A Calorimetric Study of the Lead(II) Oxide-Vanadium(V) Oxide System at 680°. Inorg Chem. 1964;3:954–7.

    Article  CAS  Google Scholar 

  23. Lopatin SI, Mittova IY, Gerasimov FS, Shugurov SM, Kostryukov VF, Skorokhodova SM. Vaporization and thermodynamic properties of the PbO-V2O5 system. Russ J Inorg Chem. 2006;51:1646–52.

    Article  Google Scholar 

  24. Phapale S, Dawar R, Pathak P, Achary SN, Mishra R. Thermodynamic investigations on compounds of ZnO-V2O5 system. Mater Today Communicat. 2021;29: 102763.

    Article  CAS  Google Scholar 

  25. Phapale S, Mishra R, Mishra PK. Standard enthalpy of formation of NaxCoO2 system. J Alloy Compd. 2012;540:62–6.

    Article  CAS  Google Scholar 

  26. Samui P, Modi KB, Phapale S, Parida SC, Mishra R. Calorimetric investigations on lithium based ceramics. J Chem Thermodyn. 2021;163: 106590.

    Article  CAS  Google Scholar 

  27. Athavale RKVT, Sundaresan M (1969) Thermochemical studies of some uranium and thorium compounds, Ind J Chem, 7

  28. Sundaresean SPAaM (1981) Spectrophotometric & calorimetric study of uranyl cation/chloride anion system in aqueous solution, Ind J Chem, 20A

  29. Aiswarya PM. Determination of standard molar enthalpies of formation of Bi2Mo3O12 (s) Bi2MoO6 (s), Bi6Mo2O15 (s) and Bi6MoO12 (s) by solution calorimetry. Thermochim Acta. 2019;682:178401–172019.

    Article  CAS  Google Scholar 

  30. U.S.D.o.C. National BUREAU OF STANDARDS, Washington, DC 20234, USA, Synthetic Sapphire Al2O3, Certificate of standard reference materials, SRM 720, in, 1982.

  31. Dawar R, Bevara S, Achary SN, Babu PD, Mishra R, Tyagi AK. Thermodynamic investigations on K3Ln5(PO4)6 (Ln = Eu and Gd) compounds. J Alloy Compd. 2019;771:936–43.

    Article  CAS  Google Scholar 

  32. Jafar M, Phapale SB, Nagabhusan Achary S, Mishra R, Tyagi AK. High temperature crystallographic and thermodynamic investigations on synthetic calzirtite (Ca2Zr5Ti2O16). J Alloys Comp. 2016;682:284–93.

    Article  CAS  Google Scholar 

  33. Sanahuja A, Cesari E. Enthalpy of solution of KCl and NaCl in water at 29815 K. J Chem Thermodynamics. 1984;16:1195–202.

    Article  CAS  Google Scholar 

  34. National Bureau of Standards Certificate for SRM 1655 (KCl), in, U.S. Dept. of Commerce, Washington, DC, March 1981.

  35. Kubaschewski CBAO, Spencer PJ Materials Thermochemistry, Sixth Edition (International Series on Materials Science and Technology), in, Pergamon Press.

  36. Naumov BNRGB, Khodakovskii IL. Handbook of Thermodynamic Values (for Geologists). Moscow: Atomizdat; 1971. ((in Russian)).

    Google Scholar 

  37. Barin I (2008) Thermochemical data of pure substances Third Edition, in, Wiley Publication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Dawar or R. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18101 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aiswarya, P.M., Dawar, R., Narang, S. et al. Determination of thermochemical properties of lead vanadates. J Therm Anal Calorim 148, 5557–5571 (2023). https://doi.org/10.1007/s10973-023-12116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12116-1

Keywords

Navigation