Skip to main content
Log in

Application of nanofluids in heat pipes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluids can effectively enhance the heat transfer performance of different types of heat pipes according to the existing research. This paper provides a comprehensive literature review on the application of nanofluids in thermosyphon heat pipe, pulsating heat pipe and wick heat pipe, respectively. The effect of important variables such as different nanoparticles, concentrations, packing ratios, inclination angles and thermal loads on heat pipe performance is discussed. Studies shows that there is a certain concentration of nanoparticles for highly efficient utilization. High concentration of nanoparticles leads to higher thermal resistance mainly due to the increase in dynamic viscosity and the possibility of particle agglomeration. The enhanced heat transfer performance is caused by the enhanced Brownian motion, improved surface wettability, increased nucleation sites and inherently high thermal conductivity of nanofluids. Finally, the current problems and future trends of heat pipe technology based on nanofluids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Fig.17

Similar content being viewed by others

Abbreviations

CHF:

Critical heat flux

CNF:

Cellulose nanofiber

CNT:

Carbon nanotube

DI water:

Deionized water

DS:

Diazonium salt

DW:

Distilled water

EG:

Ethylene glycol

GHP:

Grooved heat pipe

GNP:

Graphene nanoplatelets

GO:

Graphene oxide

HNF:

Hybrid nanofluid

HP:

Heat pipe

LTS:

Loop thermosiphon

MWCNT:

Multi-walled carbon nanotubes

OHP:

Oscillating heat pipe

PCA:

1-Pyrene carboxylic acid

PHP:

Pulsating heat pipe

P-ML20:

Multi-layer graphene

SDBS:

Sodium dodecyl benzene sulfonate

SDS:

Sodium dodecyl sulfate

SWCNT:

Single-walled carbon nanotube

TC:

Thermal conductivity

TE:

Thermal efficiency

THP:

Thermosyphon heat pipe

TPCT:

Two-phase closed thermosyphon

TR:

Thermal resistance

References

  1. Faghri A. Review and advances in heat pipe science and technology. J Heat Transf. 2012;134(12):123001. https://doi.org/10.1115/1.4007407.

    Article  Google Scholar 

  2. Li Z, Sarafraz MM, Mazinani A, Moria H, Tlili I, Alkanhal TA, Safaei MR. Operation analysis, response and performance evaluation of a pulsating heat pipe for low temperature heat recovery. Energy Convers Manag Energy. 2020;222:113230. https://doi.org/10.1016/j.enconman.2020.113230.

    Article  CAS  Google Scholar 

  3. Gaugler RS. Heat transfer device: US, 2350348[P], 1944.

  4. Grover GM. Evaporation-condensation heat transfer device: US. 3229759[P], 1966.

  5. Chougule SS, Nirgude VV, Shewale SP, Pise AT, Sahu SK, Shah H. Application of paraff-in based nanocomposite in heat pipe module for electronic equipment cooling. Mater Today Proc. 2018;5(11):23333–8. https://doi.org/10.1016/j.matpr.2018.11.070.

    Article  CAS  Google Scholar 

  6. Ramkumar P, Sivasubramanian M, Raveendiran P, Kanna PR. An experimental inquisition of waste heat recovery in electronic component system using concentric tube heat pipe heat exchanger with different working fluids under gravity assistance. Microprocess Microsyst. 2021;83:104033. https://doi.org/10.1016/j.micpro.2021.104033.

    Article  Google Scholar 

  7. Hayat MA, Ali HM, Janjua MM, Pao W, Li C, Alizadeh M. Phase change material/heat pipe and Copper foam-based heat sinks for thermal management of electronic systems. J Energy Storage. 2020;32:101971. https://doi.org/10.1016/j.est.2020.101971.

    Article  Google Scholar 

  8. Abdelkareem MA, Maghrabie HM, Abo-Khalil AG, Adhari OHK, Sayed ET, Radwan A, Olabi AG. Battery thermal management systems based on nanofluids for electric vehicles. J Energy Storage. 2022;50:104385. https://doi.org/10.1016/j.est.2022.104385.

    Article  Google Scholar 

  9. Abdelkareem MA, Maghrabie HM, Abo-Khalil AG, Adhari OHK, Sayed ET, Radwan A, Olabi AG. Thermal management systems based on heat pipes for batteries in EVs/HEVs. J Energy Storage. 2022;51:104384. https://doi.org/10.1016/j.est.2022.104384.

    Article  Google Scholar 

  10. Hashimoto M, Akizuki Y, Sato K, Ueno A, Nagano H. Proposal, transient model, and experimental verification of loop heat pipe as heating device for electric-vehicle batteries. Appl Therm Eng. 2022;211:118432. https://doi.org/10.1016/j.applthermaleng.2022.118432.

    Article  CAS  Google Scholar 

  11. Lee J, Kim D, Mun J, Kim S. Heat-transfer characteristics of a cryogenic loop heat pipe for space applications. Energies. 2020;13(7):1616. https://doi.org/10.3390/en13071616.

    Article  CAS  Google Scholar 

  12. Mashaei PR, Shahryari M. Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling. Acta Astronaut. 2015;111:345–55. https://doi.org/10.1016/j.actaastro.2015.02.003.

    Article  CAS  Google Scholar 

  13. Mashaei PR, Shahryari M, Madani S. Analytical study of multiple evaporator heat pipe with nanofluid; a smart material for satellite equipment cooling application. Aerosp Sci Technol. 2016;59:112–21. https://doi.org/10.1016/j.ast.2016.10.018.

    Article  Google Scholar 

  14. Patel VK. An efficient optimization and comparative analysis of ammonia and methanol heat pipe for satellite application. Energy Convers Manag. 2018;165:382–95. https://doi.org/10.1016/j.enconman.2018.03.076.

    Article  CAS  Google Scholar 

  15. Eidan AA. Optimizing the performance of the air conditioning system using an innovative heat pipe heat exchanger. Case Stud Therm Eng. 2021;26:101075. https://doi.org/10.1016/j.csite.2021.101075.

    Article  Google Scholar 

  16. Nakkaew S, Chitipalungsri T, Ahn HS, Jerng DW, Asirvatham LG, Dalkılıç AS, Wongwises S. Application of the heat pipe to enhance the performance of the vapor compression refrigeration system. Case Stud Therm Eng. 2019;15:100531. https://doi.org/10.1016/j.csite.2019.100531.

    Article  Google Scholar 

  17. Liang K, Li Z, Chen M, Jiang H. Comparisons between heat pipe, thermoelectric system, and vapour compression refrigeration system for electronics cooling. Appl Therm Eng. 2019;146:260–7. https://doi.org/10.1016/j.applthermaleng.2018.09.120.

    Article  Google Scholar 

  18. Abad HKS, Ghiasi M, Mamouri SJ, Shafii MB. A novel integrated solar desalination system with a pulsating heat pipe. Desalination. 2013;311:206–10. https://doi.org/10.1016/j.desal.2012.10.029.

    Article  CAS  Google Scholar 

  19. Shoeibi S, Kargarsharifabad H, Rahbar N, Khosravi G, Sharifpur M. An integrated solar desalination with evacuated tube heat pipe solar collector and new wind ventilator external condenser. Sustain Energy Technol Assess. 2022;50:101857. https://doi.org/10.1016/j.seta.2021.101857.

    Article  Google Scholar 

  20. Aref L, Fallahzadeh R, Avargani VM. An experimental investigation on a portable bubble basin humidification/dehumidification desalination unit utilizing a closed-loop pulsating heat pipe. Energy Convers Manag. 2021;228:113694. https://doi.org/10.1016/j.enconman.2020.113694.

    Article  Google Scholar 

  21. Senthil R, Elavarasan RM, Pugazhendhi R, Premkumar M, Vengadesan E, Navakrishnan S, Natarajan SK. A holistic review on the integration of heat pipes in solar thermal and photovoltaic systems. Sol Energy. 2021;227:577–605. https://doi.org/10.1016/j.solener.2021.09.036.

    Article  Google Scholar 

  22. Chilbule PV, Dhole LP. Heat pipe integrated solar thermal systems and applications: a review. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.11.563.

    Article  Google Scholar 

  23. Alshukri MJ, Hussein AK, Eidan AA, Alsabery AI. A review on applications and techniques of improving the performance of heat pipe-solar collector systems. Sol Energy. 2022;236:417–33. https://doi.org/10.1016/j.solener.2022.03.022.

    Article  CAS  Google Scholar 

  24. Xu Y, Xue Y, Qi H, Cai W. Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids. Int J Heat Mass Transf. 2020;157:119727. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119727.

    Article  CAS  Google Scholar 

  25. Chan CW, Siqueiros E, Ling-Chin J, Royapoor M, Roskilly AP. Heat utilisation technologies: a critical review of heat pipes. Renew Sustain Energy Rev. 2015;50:615–27. https://doi.org/10.1016/j.rser.2015.05.028.

    Article  CAS  Google Scholar 

  26. Li SF, Liu Z. Parametric study of rotating heat pipe performance: a review. Renew Sustain Energy Rev. 2020;117:109482. https://doi.org/10.1016/j.rser.2019.109482.

    Article  CAS  Google Scholar 

  27. Bumataria RK, Chavda NK, Panchal H. Current research aspects in mono and hybrid nanofluid based heat pipe technologies. Heliyon. 2019;5(5):e01627. https://doi.org/10.1016/j.heliyon.2019.e01627.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Akachi H. Structure of a heat pipe: US, US4921041, 1990.

  29. Nazari MA, Ahmadi MH, Ghasempour R, Shafii MB. How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev. 2018;91:630–8. https://doi.org/10.1016/j.rser.2018.04.042.

    Article  CAS  Google Scholar 

  30. Liu ZH, Li YY, Bao R. Thermal performance of inclined grooved heat pipes using nano fluids. Int J Therm Sci. 2010;49(9):1680–7. https://doi.org/10.1016/j.ijthermalsci.2010.03.006.

    Article  CAS  Google Scholar 

  31. Spinato G, Borhani N, Thome JR. Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe. Energy. 2015;90:889–99. https://doi.org/10.1016/j.energy.2015.07.119.

    Article  CAS  Google Scholar 

  32. Alkasmoul FS, Asaker M, Almogbel A, AlSuwailem A. Combined effect of thermal and hydraulic performance of different nanofluids on their cooling efficiency in microchannel heat sink. Case Stud Therm Eng. 2022;30:101776. https://doi.org/10.1016/j.csite.2022.101776.

    Article  Google Scholar 

  33. Said Z, Sohail MA. 10-Challenges and difficulties in developing hybrid nanofluids and way forward. In: Hybrid nanofluids: Preparation, Characterization and Applications Micro and Nano Technologies. Elsevier; 2022. p. 233–59. https://doi.org/10.1016/B978-0-323-85836-6.00010-7.

    Chapter  Google Scholar 

  34. Ajeeb W, da Silva RRT, Murshed SS. Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger. Appl Therm Eng. 2023;218:119321. https://doi.org/10.1016/j.applthermaleng.2022.119321.

    Article  CAS  Google Scholar 

  35. Choi S, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fed. 1995;231(1):99–105.

    CAS  Google Scholar 

  36. Fallahzadeh R, Aref L, Gholamiarjenaki N, Nonejad Z, Saghi M. Experimental investigation of the effect of using water and ethanol as working fluid on the performance of pyramid-shaped solar still integrated with heat pipe solar collector. Sol Energy. 2020;207:10–21. https://doi.org/10.1016/j.solener.2020.06.032.

    Article  CAS  Google Scholar 

  37. Czajkowski C, Nowak AI, Błasiak P, Ochman A, Pietrowicz S. Experimental study on a large scale pulsating heat pipe operating at high heat loads, different adiabatic lengths and various filling ratios of acetone, ethanol, and water. Appl Therm Eng. 2020;165:114534. https://doi.org/10.1016/j.applthermaleng.2019.114534.

    Article  CAS  Google Scholar 

  38. Alrowaili ZA, Ezzeldien M, Shaaalan NM, Hussein E, Sharafeldin MA. Investigation of the effect of hybrid CuO–Cu/water nanofluid on the solar thermal energy storage system. J Energy Storage. 2022;50:104675. https://doi.org/10.1016/j.est.2022.104675.

    Article  Google Scholar 

  39. Zhang H, Qing S, Xu J, Zhang X, Zhang A. Stability and thermal conductivity of TiO2/water nanofluids: a comparison of the effects of surfactants and surface modification. Colloids Surf Physicochem Eng Asp. 2022;641:128492. https://doi.org/10.1016/j.colsurfa.2022.128492.

    Article  CAS  Google Scholar 

  40. Rakpakdee W, Motozawa M, Fukuta M, Pornnattawut M, Chaiworapuek W. Effects of 25 kHz ultrasound from single and double transducers on thermal and friction characteristics of laminar flows in water or water-based Al2O3 nanofluids. Int J Therm Sci. 2022;178:107604.

    Article  CAS  Google Scholar 

  41. Fal J, Sobczak J, Stagraczyński R, Estellé P, Żyła G. Electrical conductivity of titanium dioxide ethylene glycol-based nanofluids: Impact of nanoparticles phase and concentration. Powder Technol. 2022;404:117423. https://doi.org/10.1016/j.ijthermalsci.2022.107604.

    Article  CAS  Google Scholar 

  42. Alves LOFT, Henríquez JR, da Costa JÂP, Abramchuk V. Comparative performance analysis of internal combustion engine water jacket coolant using a mix of Al2O3 and CuO-based nanofluid and ethylene glycol. Energy. 2022;250:123832. https://doi.org/10.1016/j.energy.2022.123832.

    Article  CAS  Google Scholar 

  43. Dong J, Zheng Q, Xiong C, Sun E, Chen J. Experimental investigation and application of stability and thermal characteristics of SiO2–ethylene-glycol/water nanofluids. Int J Therm Sci. 2022;176:107533. https://doi.org/10.1016/j.ijthermalsci.2022.107533.

    Article  CAS  Google Scholar 

  44. Arif M, Kumam P, Khan D, Watthayu W. Thermal performance of GO-MoS2/engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder. Case Stud Therm Eng. 2021;27:101290. https://doi.org/10.1016/j.csite.2021.101290.

    Article  Google Scholar 

  45. Zhang Y, Shahmir N, Ramzan M, Alotaibi H, Aljohani HM. Upshot of melting heat transfer in a Von Karman rotating flow of gold-silver/engine oil hybrid nanofluid with cattaneo-christov heat flux. Case Stud Therm Eng. 2021;26:101149. https://doi.org/10.1016/j.csite.2021.101149.

    Article  Google Scholar 

  46. Ouni M, Ladhar LM, Omri M, Jamshed W, Eid MR. Solar water-pump thermal analysis utilizing copper–gold/engine oil hybrid nanofluid flowing in parabolic trough solar collector: thermal case study. Case Stud Therm Eng. 2022;30:101756. https://doi.org/10.1016/j.csite.2022.101756.

    Article  Google Scholar 

  47. Soltani F, Toghraie D, Karimipour A. Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions. Powder Technol. 2020;371:37–44. https://doi.org/10.1016/j.powtec.2020.05.059.

    Article  CAS  Google Scholar 

  48. Kang SW, Wei WC, Tsai SH, Yang SY. Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl Therm Eng. 2006;26(17–18):2377–82. https://doi.org/10.1016/j.applthermaleng.2006.02.020.

    Article  CAS  Google Scholar 

  49. Sarafraz MM, Nikkhah V, Nakhjavani M, Arya A. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment. Exp Therm Fluid Sci. 2018;91:509–19. https://doi.org/10.1016/j.expthermflusci.2017.11.007.

    Article  CAS  Google Scholar 

  50. Azizi Z, Alamdari A, Malayeri MR. Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by Cu–water nanofluid. Appl Therm Eng. 2016;99:970–8. https://doi.org/10.1016/j.applthermaleng.2016.01.140.

    Article  CAS  Google Scholar 

  51. Zaaroura I, Harmand S, Carlier J, Toubal M, Fasquelle A, Nongaillard B. Experimental studies on evaporation kinetics of gold nanofluid droplets: influence of nanoparticle sizes and coating on thermal performance. Appl Therm Eng. 2021;183:116180. https://doi.org/10.1016/j.applthermaleng.2020.116180.

    Article  CAS  Google Scholar 

  52. Abbasi FM, Gul M, Shehzad SA. Effectiveness of temperature-dependent properties of Au, Ag, Fe3O4, Cu nanoparticles in peristalsis of nanofluids. Int Commun Heat Mass Transf. 2020;116:104651. https://doi.org/10.1016/j.icheatmasstransfer.2020.104651.

    Article  CAS  Google Scholar 

  53. Chaurasia SR, Sarviya RM. Thermal performance analysis of CuO/water nanofluid flow in a pipe with single and double strip helical screw tape. Appl Therma Eng. 2020;166:114631. https://doi.org/10.1016/j.applthermaleng.2019.114631.

    Article  CAS  Google Scholar 

  54. Khan A, Ali M. Thermo-hydraulic behavior of alumina/silica hybrid nanofluids through a straight minichannel heat sink. Case Stud Therm Eng. 2022;31:101838. https://doi.org/10.1016/j.csite.2022.101838.

    Article  Google Scholar 

  55. Gelis K, Celik AN, Ozbek K, Ozyurt O. Experimental investigation into efficiency of SiO2/water-based nanofluids in photovoltaic thermal systems using response surface methodology. Sol Energy. 2022;235:229–41. https://doi.org/10.1016/j.solener.2022.02.021.

    Article  CAS  Google Scholar 

  56. Khanlari A, Sözen A, Variyenli Hİ. Simulation and experimental analysis of heat transfer characteristics in the plate type heat exchangers using TiO2/water nanofluid. Int J Numer Methods Heat Fluid Flow. 2018. https://doi.org/10.1108/HFF-05-2018-0191.

    Article  Google Scholar 

  57. Sarafraz MM, Arya A, Hormozi F, Nikkhah V. On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: a comparative study. Appl Therm Eng. 2017;112:1373–81. https://doi.org/10.1016/j.applthermaleng.2016.10.196.

    Article  CAS  Google Scholar 

  58. Kiliç F, Menlik T, Sözen A. Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol Energy. 2018;164:101–8. https://doi.org/10.1016/j.solener.2018.02.002.

    Article  CAS  Google Scholar 

  59. Gao Y, Ning Y, Xu M, Wu C, Mujumdar AS, Sasmito AP. Numerical investigation of aqueous graphene nanofluid ice slurry passing through a horizontal circular pipe: heat transfer and fluid flow characteristics. Int Commun Heat Mass Transf. 2022;134:106022. https://doi.org/10.1016/j.icheatmasstransfer.2022.106022.

    Article  CAS  Google Scholar 

  60. Shirzad M, Ajarostaghi SSM, Delavar MA, Sedighi K. Improve the thermal performance of the pillow plate heat exchanger by using nanofluid: numerical simulation. Adv Powder Technol. 2019;30(7):1356–65. https://doi.org/10.1016/j.apt.2019.04.011.

    Article  CAS  Google Scholar 

  61. Zhou Z, Lv Y, Qu J, Sun Q, Grachev D. Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Appl Therm Eng. 2021;196:117300. https://doi.org/10.1016/j.applthermaleng.2021.117300.

    Article  CAS  Google Scholar 

  62. Khodabandeh E, Safaei MR, Akbari S, Akbari OA, Alrashed AA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018;122:1–16. https://doi.org/10.1016/j.renene.2018.01.023.

    Article  CAS  Google Scholar 

  63. Chougule SS, Sahu SK. Thermal performance of automobile radiator using carbon nanotube-water nanofluid—experimental study. J Therm Sci Eng Appl. 2014;6(4):041009. https://doi.org/10.1115/1.4027678.

    Article  CAS  Google Scholar 

  64. Sarafraz MM, Safaei MR, Leon AS, Tlili I, Alkanhal TA, Tian Z, Arjomandi M. Experimental investigation on thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid. Energies. 2019;12(13):126–37. https://doi.org/10.3390/en12132572.

    Article  CAS  Google Scholar 

  65. Lyu Z, Pourfattah F, Arani AAA, Asadi A, Foong LK. On the thermal performance of a fractal microchannel subjected to water and kerosene carbon nanotube nanofluid. Sci Rep. 2020;10(1):1–16. https://doi.org/10.1038/s41598-020-64142-w.

    Article  CAS  Google Scholar 

  66. Qu J, Wang C, Li X, Wang H. Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management. Appl Therm Eng. 2018;135:1–9. https://doi.org/10.1016/j.applthermaleng.2018.02.045.

    Article  Google Scholar 

  67. Wiriyasart S, Hommalee C, Sirikasemsuk S, Prurapark R, Naphon P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Stud Therm Eng. 2020;18:475–84. https://doi.org/10.1016/j.csite.2020.100583.

    Article  Google Scholar 

  68. Nazari MA, Ahmadi MH, Ghasempour R, Shafii MB, Mahian O, Kalogirou S, Wongwises S. A review on pulsating heat pipes: from solar to cryogenic applications. Appl Energy. 2018;222:475–84. https://doi.org/10.1016/j.apenergy.2018.04.020.

    Article  Google Scholar 

  69. Putra N, Iskandar FN. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment. Exp Therm Fluid Sci. 2011;35(7):1274–81. https://doi.org/10.1016/j.expthermflusci.2011.04.015.

    Article  CAS  Google Scholar 

  70. Ghorabaee H, Emami MRS, Moosakazemi F, Karimi N, Cheraghian G, Afrand M. The use of nanofluids in thermosyphon heat pipe: a comprehensive review. Powder Technol. 2021;394:250–69. https://doi.org/10.1016/j.powtec.2021.08.045.

    Article  CAS  Google Scholar 

  71. Jha KK, Armstrong M, Kumar SS, Kumar MV, Charan GS. A recent examination on the performance of heat pipes in nanofluids in enhancing the thermodynamic properties. Mater Today Proc. 2022;60:1920–6. https://doi.org/10.1016/j.matpr.2021.12.587.

    Article  CAS  Google Scholar 

  72. Pandey H, Gupta N K. A descriptive review of the thermal transport mechanisms in mono and hybrid nanofluid-filled heat pipes and current developments. Therm Sci Eng Prog. 2022: 101281. https://doi.org/10.1016/j.tsep.2022.101281.

  73. Su Z, Hu Y, Zheng S, Wu T, Liu K, Zhu M, Huang J. Recent advances in visualization of pulsating heat pipes: a review. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.119867.

    Article  Google Scholar 

  74. Parametthanuwat T, Rittidech S, Pattiya A, Ding Y, Witharana S. Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer. Nanoscale Res Lett. 2011;6(1):1–10. https://doi.org/10.1186/1556-276X-6-315.

    Article  CAS  Google Scholar 

  75. Buschmann MH, Huminic A, Mancin S, Riehl RR, Huminic G. State of the art of heat transfer of heat pipes and thermosy phons employing nanofluids as working fluid. J Nanofluids. 2019;8(2):253–66. https://doi.org/10.1166/jon.2019.1597.

    Article  Google Scholar 

  76. Shoeibi S, Mirjalily SAA, Kargarsharifabad H, Khiadani M, Panchal H. A comprehensive review on performance improvement of solar desalination with applications of heat pipes. Desalination. 2022;540:115983. https://doi.org/10.1016/j.desal.2022.115983.

    Article  CAS  Google Scholar 

  77. Ersöz MA, Yıldız A. Thermoeconomic analysis of thermosyphon heat pipes. Renew Sustain Energy Rev. 2016;58:666–73. https://doi.org/10.1016/j.rser.2015.12.250.

    Article  CAS  Google Scholar 

  78. Guichet V, Almahmoud S, Jouhara H. Nucleate pool boiling heat transfer in wickless heat pipes (two-phase closed thermosyphons): a critical review of correlations. Therm Sci Eng Prog. 2019;13:100384. https://doi.org/10.1016/j.tsep.2019.100384.

    Article  Google Scholar 

  79. Reji AK, Kumaresan G, Sarathi A, Saiganesh AG, Kumar RS, Shelton MM. Performance analysis of thermosyphon heat pipe using aluminum oxide nanofluid under various angles of inclination. Mater Today Proc. 2021;45:1211–6. https://doi.org/10.1016/j.matpr.2020.04.247.

    Article  CAS  Google Scholar 

  80. Anand RS, Jawahar CP, Solomon AB, Koshy JS, Jacob JC, Tharakan MM. Heat transfer properties of HFE and R134a based Al2O3 nano refrigerant in thermosyphon for enhancing the heat transfer. Mater Today Proc. 2020;27:268–74. https://doi.org/10.1016/j.matpr.2019.11.014.

    Article  CAS  Google Scholar 

  81. Xu Z, Yang J. Experimental study of heat transfer performance of gravity heat tube using graphene nanoplatelet-water nanofluids. Chem Eng Mach. 2020;47(6):751–8.

    Google Scholar 

  82. Han S, Yang J. Heat transfer performance of gravity heat pipe with Cu–water nanofluid. Contemp Chem Ind. 2018;47(11):2362–4+434.

    Google Scholar 

  83. Khajehpour E, Noghrehabadi AR, Nasab AE, Nabavi SH. Experimental investigation of the effect of nanofluids on the thermal resistance of a thermosiphon L-shape heat pipe at different angles. Int Commun Heat Mass Transf. 2020;113:104549. https://doi.org/10.1016/j.icheatmasstransfer.2020.104549.

    Article  CAS  Google Scholar 

  84. Huminic G, Huminic A, Morjan I, Dumitrache F. Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. Int J Heat Mass Transf. 2011;54(1–3):555–60. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.005.

    Article  CAS  Google Scholar 

  85. Aydın DY, Aydin E, Gürü M. The effects of particle mass fraction and static magnetic field on the thermal performance of NiFe2O4 nanofluid in a heat pipe. Int J Therm Sci. 2023;183:107875. https://doi.org/10.1016/j.ijthermalsci.2022.107875.

    Article  CAS  Google Scholar 

  86. Fulpagare Y, Tsai DY, Wang CC. Performance of two-phase loop thermosiphon with graphene nanofluid. Appl Therm Eng. 2022;200:117714. https://doi.org/10.1016/j.applthermaleng.2021.117714.

    Article  CAS  Google Scholar 

  87. Aydin D, Gürü M, Sözen A. Enhancement of heat transfer performance of a heat pipe by using calcium magnesium carbonate-ethylene glycol/water nanofluid with sodium dodecylbenzene sulfonate. Period Polytechn Chem Eng. 2022. https://doi.org/10.3311/ppch.20040.

    Article  Google Scholar 

  88. Kerim M. Performance analysis of a thermosiphon charged with deionized water/ethylene glycol mixture based graphene nano platelet nanofluid. Konya Mühendislik Bilim Derg. 2022. https://doi.org/10.36306/konjes.1099896.

    Article  Google Scholar 

  89. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M. Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy. 2019;136:884–95. https://doi.org/10.1016/j.renene.2019.01.035.

    Article  CAS  Google Scholar 

  90. Wang X, Wen Q, Yang J, Shittu S, Wang X, Zhao X, Wang Z. Heat transfer and flow characteristic of a flat confined loop thermosyphon with ternary hybrid nanofluids for electronic devices cooling. Appl Therm Eng. 2023. https://doi.org/10.1016/j.applthermaleng.2022.119758.

    Article  Google Scholar 

  91. Shuoman LA, Abdelaziz M, Abdel-Samad S. Thermal performances and characteristics of thermosyphon heat pipe using alumina nanofluids. Heat Mass Transf. 2021. https://doi.org/10.1007/s00231-021-03031-y.

    Article  Google Scholar 

  92. Sarafraz MM, Hormozi F, Peyghambarzadeh SM. Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. Int Commun Heat Mass Transf. 2014. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.020.

    Article  Google Scholar 

  93. Wang Z, Zhang H, Yin L, Yang D, Yang G, Akkurt N, Xiong Y. Experimental study on heat transfer properties of gravity heat pipes in single/hybrid nanofluids and inclination angles. Case Stud Therm Eng. 2022;34:102064. https://doi.org/10.1016/j.csite.2022.102064.

    Article  Google Scholar 

  94. Elyasi R, Nowee SM, Namaghi HA, Tabatabaei M. Improvement of two-phased closed thermosyphon thermal performance by deploying nanofluids of metal nanoparticles decorated on CNT. Int J Thermofluid Sci Technol. 2022;9(5):090503. https://doi.org/10.36963/IJTST.2022090503.

  95. Xu Q, Liu L, Feng J, Qiao L, Yu C, Shi W, Ding Y. A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon. Int J Heat Mass Transf. 2020;149:119189. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119189.

    Article  CAS  Google Scholar 

  96. Kiseev V, Sazhin O. Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid. Int J Heat Mass Transf. 2019;132(557):564. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.109.

    Article  CAS  Google Scholar 

  97. Das S, Giri A, Samanta S, Kanagaraj S. Role of graphene nanofluids on heat transfer enhancement in thermosyphon. J Sci Adv Mater Dev. 2019;4(1):163–9. https://doi.org/10.1016/j.jsamd.2019.01.005.

    Article  Google Scholar 

  98. Gallego A, Herrera B, Buitrago-Sierra R, Zapata C, Cacua K. Influence of filling ratio on the thermal performance and efficiency of a thermosyphon operating with Al2O3-water based nanofluids. Nano-struct Nano-objects. 2020;22:100448. https://doi.org/10.1016/j.nanoso.2020.100448.

    Article  CAS  Google Scholar 

  99. Kaya M. An experimental investigation on thermal efficiency of two-phase closed thermosyphon (TPCT) filled with CuO/water nanofluid. Eng Sci Technol Int J. 2020;23(4):812–20. https://doi.org/10.1016/j.jestch.2020.06.006.

    Article  Google Scholar 

  100. Wlazlak A, Zajaczkowski B, Woluntarski M, Buschmann MH. Influence of graphene oxide nanofluids and surfactant on thermal behaviour of the thermosyphon. J Therm Anal Calorim. 2019;136(2):843–55. https://doi.org/10.1007/s10973-018-7632-x.

    Article  CAS  Google Scholar 

  101. Baek S, Shin D, Noh J, Choi B, Huh S, Jeong H, Sung Y. Influence of surfactants on thermal performance of Al2O3/water nanofluids in a two-phase closed thermosyphon. Case Stud Therm Eng. 2021;28:101586. https://doi.org/10.1016/j.csite.2021.101586.

    Article  Google Scholar 

  102. Mohideen ST, Jayanthi N, Venkatesh M. Thermal analysis of two-phase closed thermosyphon (TPCT) using nanofluids. Mater Today Proc. 2020;26:A1-5. https://doi.org/10.1016/j.matpr.2020.05.700.

    Article  CAS  Google Scholar 

  103. Choi D, Lee KY. Experimental study on confinement effect of two-phase closed thermosyphon and heat transfer enhancement using cellulose nanofluid. Appl Therm Eng. 2021;183:116247. https://doi.org/10.1016/j.applthermaleng.2020.116247.

    Article  CAS  Google Scholar 

  104. Chehrazi M, Moghadas BK. Experimental study of the effect of single walled carbon nanotube/water nanofluid on the performance of a two-phase closed thermosyphon. J Serb Chem Soc. 2021;86(3):313–26. https://doi.org/10.2298/JSC200628070C.

    Article  CAS  Google Scholar 

  105. Sözen A, Gürü M, Khanlari A, Çiftçi E. Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid. Appl Therm Eng. 2019;160:114001. https://doi.org/10.1016/j.applthermaleng.2019.114001.

    Article  CAS  Google Scholar 

  106. Wong SC, Liao WS. Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles. Int J Heat Mass Transf. 2018;123:839–47. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.031.

    Article  Google Scholar 

  107. Szymanski P, Mikielewicz D, Fooladpanjeh S. Current trends in Wick structure construction in loop heat pipes applications: a review. Materials. 2022;15(16):5765. https://doi.org/10.3390/ma15165765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mahdavi M, Tiari S, De Schampheleire S, Qiu S. Experimental study of the thermal characteristics of a heat pipe. Exp Therm Fluid Sci. 2018;93:292–304. https://doi.org/10.1016/j.expthermflusci.2018.01.003.

    Article  CAS  Google Scholar 

  109. Tian Z, Zhang J, Wang C, Guo K, Liu Y, Zhang D, Su GH. Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system. Appl Therm Eng. 2022;209:118296. https://doi.org/10.1016/j.applthermaleng.2022.118296.

    Article  CAS  Google Scholar 

  110. Nookaraju BC, Rani PK, Kurmarao PSV, Sarada SN, Sateesh N, Lakshmi AA, Subbiah R. Experimental and transient thermal analysis of screen mesh wick heat pipe. Mater Today Proc. 2021;46:9920–6. https://doi.org/10.1016/j.matpr.2021.02.293.

    Article  CAS  Google Scholar 

  111. Kumaresan G, Venkatachalapathy S, Naik IC. An experimental study on improvement in thermal efficiency of mesh wick heat pipe. Appl Mech Mater. 2014;592:1423–7. https://doi.org/10.4028/www.scientific.net/AMM.592-594.1423.

    Article  CAS  Google Scholar 

  112. Septiadi WN, Putra N, Juarsa M, Putra IPA, Sahmura R. Characteristics of screen mesh wick heat pipe with nano-fluid as passive cooling system. Atom Indones. 2013;39(1):24–31.

    Article  Google Scholar 

  113. Solomon AB, Ramachandran K, Asirvatham LG, Pillai BC. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. Int J Heat Mass Transf. 2014;75:523–33. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.007.

    Article  CAS  Google Scholar 

  114. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl Therm Eng. 2015;90:127–35. https://doi.org/10.1016/j.applthermaleng.2015.07.004.

    Article  CAS  Google Scholar 

  115. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS, Muhammed M. Thermal performance of screen mesh heat pipe with Al2O3 nanofluid. Exp Therm Fluid Sci. 2015;66:213–20. https://doi.org/10.1016/j.expthermflusci.2015.03.024.

    Article  CAS  Google Scholar 

  116. Ramachandran R, Ganesan K, Rajkumar MR, Asirvatham LG, Wongwises S. Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. Int Commun Heat Mass Transf. 2016;76:294–300. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030.

    Article  CAS  Google Scholar 

  117. Kim KM, Bang IC. Effects of graphene oxide nanofluids on heat pipe performance and capillary limits. Int J Therm Sci. 2016;100:346–56. https://doi.org/10.1016/j.ijthermalsci.2015.10.015.

    Article  CAS  Google Scholar 

  118. Venkatachalapathy S, Kumaresan G, Suresh S. Performance analysis of cylindrical heat pipe using nanofluids—an experimental study. Int J Multiph Flow. 2015;72:188–97. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.006.

    Article  CAS  Google Scholar 

  119. Gupta NK, Tiwari AK, Ghosh SK. Experimental study of thermal performance of nanofluid-filled and nanoparticles-coated mesh wick heat pipes. J Heat Transf. 2018;140(10):102403. https://doi.org/10.1115/1.4040146.

    Article  CAS  Google Scholar 

  120. Arya A, Sarafraz MM, Shahmiri S, Madani SAH, Nikkhah V, Nakhjavani SM. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater. Heat Mass Transf. 2018;54(4):985–97. https://doi.org/10.1007/s00231-017-2201-6.

    Article  CAS  Google Scholar 

  121. Gupta NK, Tiwari AK, Verma SK, Rathore PKS, Ghosh SK. A comparative study of thermal performance of a heat pipe using water and nanofluid, and a nanoparticle-coated wick heat pipe using water. Heat Transf Res. 2019. https://doi.org/10.1615/HeatTransRes.2019030774.

    Article  Google Scholar 

  122. Herrera B, Chejne F, Mantelli MB, Mejia J, Cacua K, Gallego A. Population balance for capillary limit modeling in a screen mesh wick heat pipe working with nanofluids. Int J Therm Sci. 2019;138:134–58. https://doi.org/10.1016/j.ijthermalsci.2018.12.015.

    Article  CAS  Google Scholar 

  123. Gupta NK, Alam P. Experimental investigation of thermal performance of mesh wick heat pipe using nanofluid. IOP Conf Ser Mater Sci Eng. 2020;998(1):012034. https://doi.org/10.1088/1757-899X/998/1/012034.

    Article  Google Scholar 

  124. Channapattana SV, Raut SB, Pawar AA, Campli S, Sarnobat SS, Dey T. Heat transfer performance analysis of screen mesh wick heat pipe using CuO nano fluid. Eur J Sustain Dev Res. 2019;3(2):0080.

    Article  Google Scholar 

  125. Vidhya R, Balakrishnan T, Kumar BS. Experimental and theoretical investigation of heat transfer characteristics of cylindrical heat pipe using Al2O3–SiO2/W-EG hybrid nanofluids by RSM modeling approach. J Eng Appl Sci. 2021;68(1):1–20. https://doi.org/10.1186/s44147-021-00034-8.

    Article  CAS  Google Scholar 

  126. Vidhya R, Balakrishnan T, Kumar BS. Investigation on thermophysical properties and heat transfer performance of heat pipe charged with binary mixture based ZnO–MgO hybrid nanofluids. Mater Today Proc. 2021;37:3423–33. https://doi.org/10.1016/j.matpr.2020.09.284.

    Article  CAS  Google Scholar 

  127. Babu NN, Kamath HC. Materials used in heat pipe. Mater Today Proc. 2015;2(4–5):1469–78. https://doi.org/10.1016/j.matpr.2015.07.072.

    Article  CAS  Google Scholar 

  128. Bernagozzi M, Georgoulas A, Miche N, Marengo M. Heat pipes in battery thermal management systems for electric vehicles: a critical review. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.119495.

    Article  Google Scholar 

  129. Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manag. 2019;182:262–81. https://doi.org/10.1016/j.enconman.2018.12.051.

    Article  Google Scholar 

  130. Kumaresan G, Venkatachalapathy S, Asirvatham LG. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. Int J Heat Mass Transf. 2014;72:507–16. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.029.

    Article  CAS  Google Scholar 

  131. Vijayakumar M, Navaneethakrishnan P, Kumaresan G, Kamatchi R. A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids. J Taiwan Inst Chem Eng. 2017;81:190–8. https://doi.org/10.1016/j.jtice.2017.10.032.

    Article  CAS  Google Scholar 

  132. Sadeghinezhad E, Mehrali M, Rosen MA, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl Therm Eng. 2016;100:775–87. https://doi.org/10.1016/j.applthermaleng.2016.02.071.

    Article  CAS  Google Scholar 

  133. Gupta NK, Verma SK, Rathore PKS, Sharma A. Effects of CuO/water nanofluid application on thermal performance of mesh wick heat pipe. Heat Transf Res. 2020;51(9):356–61. https://doi.org/10.1615/HeatTransRes.2020030772.

    Article  Google Scholar 

  134. Vijayakumar M, Navaneethakrishnan P, Kumaresan G. Thermal characteristics studies on sintered wick heat pipe using CuO and Al2O3 nanofluids. Exp Therm Fluid Sci. 2016;79:25–35. https://doi.org/10.1016/j.expthermflusci.2016.06.021.

    Article  CAS  Google Scholar 

  135. Esmaeilzadeh A, Silakhori M, Nik Ghazali NN, Metselaar HSC, Bin Mamat A, Naghavi Sanjani MS, Iranmanesh S. Thermal performance and numerical simulation of the 1-pyrene carboxylic-acid functionalized graphene nanofluids in a sintered wick heat pipe. Energies. 2020;13(24):6542. https://doi.org/10.3390/en13246542.

    Article  CAS  Google Scholar 

  136. Esmaeilzadeh A, Nik-Ghazali N, Metselaar HSC, Naghavi MS, Azuddin M, Iranmanesh S. Thermal performance evaluation of the heat pipe by using 1-pyrene carboxylic-acid functionalized graphene nanofluid. Int Commun Heat Mass Transf. 2021;129:105669. https://doi.org/10.1016/j.icheatmasstransfer.2021.105669.

    Article  CAS  Google Scholar 

  137. Kumar PM, Saminathan R, Tharwan M, Hadidi H, Stalin P, Kumaresan G, Gebreyohannes DT. Study on sintered wick heat pipe (SWHP) with CuO nanofluids under different orientation. J Nanomater. 2022. https://doi.org/10.1155/2022/7158228.

    Article  Google Scholar 

  138. Sadeghinezhad E, Akhiani AR, Metselaar HSC, Latibari ST, Mehrali M, Mehrali M. Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids. Appl Therm Eng. 2020;175:115385. https://doi.org/10.1016/j.applthermaleng.2020.115385.

    Article  CAS  Google Scholar 

  139. Anand AR. Effect of various parameters on heat transport capability of axially grooved heat pipes. Therm Sci Eng Prog. 2021;24:100890. https://doi.org/10.1016/j.tsep.2021.100890.

    Article  CAS  Google Scholar 

  140. Faghri A. Review and advances in heat pipe science and technology. J Heat Transf. 2012. https://doi.org/10.1115/1.4007407.

    Article  Google Scholar 

  141. Alijani H, Çetin B, Akkuş Y, Dursunkaya Z. Effect of design and operating parameters on the thermal performance of aluminum flat grooved heat pipes. Appl Therm Eng. 2018;132:174–87. https://doi.org/10.1016/j.applthermaleng.2017.12.085.

    Article  Google Scholar 

  142. Nemec P. Gravity in heat pipe technology. Gravity Geosci Appl Ind Technol Quantum Asp. 2017. https://doi.org/10.5772/intechopen.71543.

    Article  Google Scholar 

  143. Yang XF, Liu ZH, Zhao J. Heat transfer performance of a horizontal micro-grooved heat pipe using CuO nanofluid. J Micromech Microeng. 2008;18(3):035038. https://doi.org/10.1088/0960-1317/18/3/035038.

    Article  CAS  Google Scholar 

  144. Wang GS, Song B, Liu ZH. Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids. Exp Therm Fluid Sci. 2010;34(8):1415–21. https://doi.org/10.1016/j.expthermflusci.2010.07.004.

    Article  CAS  Google Scholar 

  145. Han WS, Rhi SH. Thermal characteristics of grooved heat pipe with hybrid nanofluids. Therm Sci. 2011;15(1):195–206. https://doi.org/10.2298/TSCI100209056H.

    Article  Google Scholar 

  146. Liu ZH, Li YY, Bao R. Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. Int J Therm Sci. 2011;50(4):558–68. https://doi.org/10.1016/j.ijthermalsci.2010.11.013.

    Article  CAS  Google Scholar 

  147. Mehrali M, Sadeghinezhad E, Azizian R, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manag. 2016;118:459–73. https://doi.org/10.1016/j.enconman.2016.04.028.

    Article  CAS  Google Scholar 

  148. Aly WI, Elbalshouny MA, Abd El-Hameed HM, Fatouh M. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio. Appl Therm Eng. 2017;110:1294–304. https://doi.org/10.1016/j.applthermaleng.2016.08.130.

    Article  CAS  Google Scholar 

  149. Pandya NS, Desai AN, Tiwari AK, Said Z. Influence of the geometrical parameters and particle concentration levels of hybrid nanofluid on the thermal performance of axial grooved heat pipe. Therm Sci Eng Prog. 2021;21:100762. https://doi.org/10.1016/j.tsep.2020.100762.

    Article  CAS  Google Scholar 

  150. Mehrali M, Sadeghinezhad E, Azizian R, Akhiani AR, Latibari ST, Mehrali M. Metselaar HSC. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manage. 2016;118(June):459–73. https://doi.org/10.1016/j.enconman.2016.04.028.

    Article  CAS  Google Scholar 

  151. Mehrali M, Sadeghinezhad E, Tahan Latibari S, Mehrali M, Togun H, Zubir MNM, Metselaar HSC. Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J Mater Sci. 2014;49(20):7156–71. https://doi.org/10.1007/s10853-014-8424-8.

    Article  CAS  Google Scholar 

  152. Do KH, Jang SP. Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transf. 2010;53(9–10):2183–92. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.020.

    Article  CAS  Google Scholar 

  153. Taslimifar M, Mohammadi M, Afshin H, Saidi MH, Shafii MB. Overall thermal performance of ferrofluidic open loop pulsating heat pipes: an experimental approach. Int J Therm Sci. 2013;65:234–41. https://doi.org/10.1016/j.ijthermalsci.2012.10.016.

    Article  CAS  Google Scholar 

  154. Kim W, Kim SJ. Effect of a flow behavior on the thermal performance of closed-loop and closed-end pulsating heat pipes. Int J Heat Mass Transf. 2020;149:119251. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119251.

    Article  CAS  Google Scholar 

  155. Jun S, Kim SJ. Comparison of the thermal performances and flow characteristics between closed-loop and closed-end micro pulsating heat pipes. Int J Heat Mass Transf. 2016;95:890–901. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.064.

    Article  Google Scholar 

  156. Takawale A, Abraham S, Sielaff A, Mahapatra PS, Pattamatta A, Stephan P. A comparative study of flow regimes and thermal performance between flat plate pulsating heat pipe and capillary tube pulsating heat pipe. Appl Therm Eng. 2019;149:613–24. https://doi.org/10.1016/j.applthermaleng.2018.11.119.

    Article  CAS  Google Scholar 

  157. Weiwei W, Fuyun Z, Lei W, Yang C, Yueshuai Z, Guobiao Y, Jiayun S. Vapor-liquid pulsating phenomenon and heat transfer behavior in GO-nanofluid pulsating heat pipe. J Cent South Univ Sci Technol. 2021;52(6):1789–97.

    Google Scholar 

  158. Zufar M, Gunnasegaran P, Kumar HM, Ng KC. Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. Int J Heat Mass Transf. 2020;146:118887. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118887.

    Article  CAS  Google Scholar 

  159. Zhou Y, Cui X, Weng J, Shi S, Han H, Chen C. Experimental investigation of the heat transfer performance of an oscillating heat pipe with graphene nanofluids. Powder Technol. 2018;332:371–80. https://doi.org/10.1016/j.powtec.2018.02.048.

    Article  CAS  Google Scholar 

  160. Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf. 2018;91:90–4. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006.

    Article  CAS  Google Scholar 

  161. Wu Q, Xu R, Wang R, Li Y. Effect of C60 nanofluid on the thermal performance of a flat-plate pulsating heat pipe. Int J Heat Mass Transf. 2016;100:892–8. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.008.

    Article  CAS  Google Scholar 

  162. Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016;301:1218–26. https://doi.org/10.1016/j.powtec.2016.08.007.

    Article  CAS  Google Scholar 

  163. Goshayeshi HR, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Therm Fluid Sci. 2015;68:663–8. https://doi.org/10.1016/j.expthermflusci.2015.07.014.

    Article  CAS  Google Scholar 

  164. Karthikeyan VK, Ramachandran K, Pillai BC, Solomon AB. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe. Exp Therm Fluid Sci. 2014;54:171–8. https://doi.org/10.1016/j.expthermflusci.2014.02.007.

    Article  CAS  Google Scholar 

  165. Tanshen MR, Munkhbayar B, Nine MJ, Chung H, Jeong H. Effect of functionalized MWCNTs/water nanofluids on thermal resistance and pressure fluctuation characteristics in oscillating heat pipe. Int Commun Heat Mass Transf. 2013;48:93–8. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.011.

    Article  CAS  Google Scholar 

  166. Qu J, Wu H, Cheng P. Thermal performance of an oscillating heat pipe with Al2O3–water nanofluids. Int Commun Heat Mass Transf. 2010;37(2):111–5. https://doi.org/10.1016/j.icheatmasstransfer.2009.10.001.

    Article  CAS  Google Scholar 

  167. Xu Y, Xue Y, Qi H, Cai W. Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids. Int J Heat Mass Transf. 2020;157:119727. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119727.

    Article  CAS  Google Scholar 

  168. Zhou Z, Lv Y, Qu J, Sun Q, Grachev D. Performance evaluation of hybrid oscillating heat pipe with carbon nanotube nanofluids for electric vehicle battery cooling. Appl Therm Eng. 2021;196(27):117300. https://doi.org/10.1016/j.applthermaleng.2021.117300.

    Article  CAS  Google Scholar 

  169. Jin H, Lin G, Zeiny A, Bai L, Cai J, Wen D. Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids. Int J Heat Mass Transf. 2019;139(Aug):789801. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.117.

    Article  CAS  Google Scholar 

  170. Zhou Y, Yang H, Liu L, Zhang M, Wang Y, Zhang Y, Zhou B. Enhancement of start-up and thermal performance in pulsating heat pipe with GO/water nanofluid. Powder Technol. 2021;384:414–22. https://doi.org/10.1016/j.powtec.2021.02.021.

    Article  CAS  Google Scholar 

  171. Akbari A, Saidi MH. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe. J Therm Anal Calorim. 2019;135(3):1835–47. https://doi.org/10.1007/s10973-018-7388-3.

    Article  CAS  Google Scholar 

  172. Zhang D, He Z, Guan J, Tang S, Shen C. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: an experimental study. Int J Heat Mass Transf. 2022;183:122100. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100.

    Article  CAS  Google Scholar 

  173. Riehl RR, Murshed SMS. Performance evaluation of nanofluids in loop heat pipes and oscillating heat pipes. Int J Thermofluids. 2022;14:100147. https://doi.org/10.1016/j.ijft.2022.100147.

    Article  CAS  Google Scholar 

  174. Chen M, Li J. Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. J Energy Storage. 2020;32:101715. https://doi.org/10.1016/j.est.2020.101715.

    Article  Google Scholar 

  175. Venkataramana P, Vijayakumar P, Balakrishna B. Experimental investigation of aluminum oxide nanofluid on closed loop pulsating heat pipe performance. J Appl Fluid Mech. 2022;15(6):1947–55. https://doi.org/10.47176/jafm.15.06.1324.

    Article  Google Scholar 

  176. Madhuri M, Yadav NP. Parametric investigation of closed loop pulsating heat pipe with cerium oxide nanofluid. J Appl Fluid Mech. 2022;15(6):1717–27. https://doi.org/10.47176/JAFM.15.06.1220.

    Article  Google Scholar 

  177. Xu H, Zhang P, Yan L, Xu D, Ma W, Wang L. Thermal characteristic and analysis of microchannel structure flat plate pulsating heat pipe with silver nanofluid. IEEE Access. 2019;7:51724–34. https://doi.org/10.1109/ACCESS.2019.2907820.

    Article  Google Scholar 

  178. Riehl RR. Thermal enhancement using nanofluids on high heat dissipation electronic components. J Nanofluids. 2019. https://doi.org/10.1166/jon.2019.1563.

    Article  Google Scholar 

  179. Hashemi SM, Maleki A, Ahmadi MH. The effect of some metal oxide nanocomposites on the pulsating heat pipe performance. Energy Rep. 2021;7:8825–33. https://doi.org/10.1016/j.egyr.2021.10.065.

    Article  Google Scholar 

  180. Mohammadi O, Shafii MB, Rezaee Shirin-Abadi A, Heydarian R, Ahmadi MH. The impacts of utilizing nano-encapsulated PCM along with RGO nanosheets in a pulsating heat pipe, a comparative study. Int J Energy Res. 2021;45(13):19481–99. https://doi.org/10.1002/er.7056.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by Key Research and Development and Promotion Project in Henan province-Science and Technology (International Cooperation) (182102410087, 222102520016). Innovative Research Team (in Science and Technology) in University of Henan Province (191RTSTHN011). The funding is from Henan Province of China under Henan International Joint Laboratory of Thermo-fluid Electro-chemical System for New Energy Vehicle.

Author information

Authors and Affiliations

Authors

Contributions

YG conceived, drafted and revised the paper. QH, YR, XW, performed the literature search, analysis and drafted the paper. SG, ZH, PG revised the paper.

Corresponding author

Correspondence to Yuguo Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Hu, Q., Ren, Y. et al. Application of nanofluids in heat pipes. J Therm Anal Calorim 148, 5149–5177 (2023). https://doi.org/10.1007/s10973-023-12115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12115-2

Keywords

Navigation