Skip to main content
Log in

Model identification and classification of autocatalytic decomposition kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Decomposition of most hazardous chemicals is accompanied by autocatalytic characteristics. Strength of autocatalytic decomposition sheds light on the development of risk control measures and identification of the most dangerous scenes in emergency venting systems. In this paper, autocatalytic factor Z(T) which was deduced based on the Perez–Benito model can be considered as the characterization of autocatalysis. And the value of autocatalytic factor can be calculated by the formula Z(T) = (k1/k2)exp [− (E1 − E2)/RT] under known kinetics. By deriving the relationship between autocatalytic factor and intersection conversion of different heating rate curves, the calculation value of autocatalytic factor can be simplified by formula Z(T*) = 1 − (αβi + αβni) under unknown kinetics. Through the numerical simulation under different kinetic parameters, autocatalytic strength can be divided into five intervals based on the value of Z(T). Reliability of the method was verified by application and comparison of five substances with the known autocatalytic strength.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chalk SJ, et al. IUPAC compendium of chemical terminology-the gold book. Zurich: International Union of Pure and Applied Chemistry; 2019.

    Google Scholar 

  2. Vayenas CG, Fokas AS, Grigoriou D. Catalysis and autocatalysis of chemical synthesis and of hadronization. Appl Catal B. 2017;203:582–90.

    Article  CAS  Google Scholar 

  3. Kumar J, Nath S. Analysis of autocatalytic reactions with Michaelis-Menten kinetics in an isothermal continuous stirred tank reactor. Chem Eng Sci. 1997;52(20):3455–62.

    Article  CAS  Google Scholar 

  4. Chervin S, Bodman GT. Phenomenon of autocatalysis in decomposition of energetic chemicals. Thermochim Acta. 2002;392:371–83.

    Article  Google Scholar 

  5. Liu SH, Hou HY, Shu CM. Thermal hazard evaluation of the autocatalytic reaction of benzoyl peroxide using DSC and TAM III. Thermochim Acta. 2015;605:68–76.

    Article  CAS  Google Scholar 

  6. Stoessel F. Thermal safety of chemical processes: risk assessment and process design. New York: WILEY; 2008. p. 179–201.

    Book  Google Scholar 

  7. Bou-Diab L, Fierz H. Autocatalytic decomposition reactions, hazards and detection. J Hazard Mater. 2002;93(1):137–46.

    Article  CAS  PubMed  Google Scholar 

  8. Roduit B, Hartmann M, Folly P, et al. Parameters influencing the correct thermal safety evaluations of autocatalytic reactions. Chem Eng Trans. 2013;31:907–12.

    Google Scholar 

  9. Yang T, Chen LP, Chen WH, et al. Experimental method on rapid identification of autocatalysis in decomposition reactions. Phys-Chim Sin Acta. 2014;30(7):155–84.

    Google Scholar 

  10. Li XR, Koseki HJ. SADT prediction of autocatalytic material using isothermal calorimetry analysis. Thermochim Acta. 2005;431(1):113–6.

    Article  CAS  Google Scholar 

  11. Bao SL, Chen WH, Chen LP, et al. Identification and thermokinetics of autocatalytic exothermic decomposition of 2,4-Dinitrotoluene. Phys-Chim Sin Acta. 2013;29(3):479–85.

    Article  CAS  Google Scholar 

  12. Dien JM, Fierz H, Stoessel F, et al. The thermal risk of autocatalytic decompositions: a kinetic study. CHIMIA Int J Chem. 1994;48(12):542–50.

    Article  CAS  Google Scholar 

  13. Tseng JM, Lin CP. Prediction of incompatible reaction of dibenzoyl peroxide by isothermal calorimetry analysis and green thermal analysis technology. J Therm Anal Calorim. 2012;107(3):927–33.

    Article  CAS  Google Scholar 

  14. Sanchirico R. Model selection and parameters estimation in kinetic thermal evaluations using semiempirical models. AIChE J. 2012;58(6):1869–79.

    Article  CAS  Google Scholar 

  15. Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138(2):337–46.

    Article  Google Scholar 

  16. Sbirrazzuoli N, Girault Y, Elégant L. The Málek method in the kinetic study of polymerization by differential scanning calorimetry. Thermochim Acta. 1995;249:179–87.

    Article  CAS  Google Scholar 

  17. Gotor FJ, et al. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82.

    Article  CAS  Google Scholar 

  18. Zhao XQ, Wu W, Li HB, et al. Heat-quench-heat method in adiabatic calorimetry: determining decomposition mechanism model and kinetic evaluation with lower thermal inertia experimental data. J Therm Anal Calorim. 2022;147:1405–19.

    Article  CAS  Google Scholar 

  19. Zhao XQ, Chen WH, Wu WQ, et al. Kinetic-parameters-free method of determining autocatalytic decomposition from experimental adiabatic Data. Process Saf Environ Prot. 2020;142:250–9.

    Article  CAS  Google Scholar 

  20. Burnham AK. Application of the Šesták-Berggren equation to organic and inorganic materials of practical interest. J Therm Anal Calorim. 2000;60(3):895–908.

    Article  CAS  Google Scholar 

  21. Eisenreich N, Pfeil A. Non-linear least-squares fit of non-isothermal thermoanalytical curves. Reinvestigation of the kinetics of the autocatalytic decomposition of nitrated cellulose. Thermochim Acta. 1983;61(1–2):13–21.

    Article  CAS  Google Scholar 

  22. Gao HX, Zhang H, Zhao FQ, et al. Kinetic behavior of the exothermic decomposition reaction of N-Guanylurea Dinitramide. Phys-Chim Sin Acta. 2008;24(3):453–8.

    Article  CAS  Google Scholar 

  23. Roduit B, Hartmann M, Folly P, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim Acta. 2014;579(5):31–9.

    Article  CAS  Google Scholar 

  24. Grewer T. Thermal hazards of chemical reactions Industrial safety series, vol. 4. Amsterdam: Elsevier; 1994. p. 11–2.

    Google Scholar 

  25. Steinbach J. Safety assessment for chemical processes. Weinheim: VCH; 1999.

    Google Scholar 

  26. Hugo P, Wagner S, Gnewikow T. Determination of chemical kinetics by DSC measurements. Part 1: theoretical foundations. Thermochim Acta. 1993;225(2):143–52.

    Article  CAS  Google Scholar 

  27. Bohn MA, Pontius H. Thermal behavior of energetic materials in adiabatic self-heating determined by ARCtm. In: European research consortium for informatics and mathematics at FHG; 2001.

  28. Dong Z, Xue BB, Chen LP, Chen WH. A study of classifying autocatalytic strength with adiabatic conditions. J Therm Anal Calorim. 2019;137:217–27.

    Article  CAS  Google Scholar 

  29. Wu WQ, Dong Z, Xue BB, et al. Quantitative classification of autocatalytic strength for material decomposition based on the ratio of heat release. J Therm Anal Calorim. 2022;147:1389–404.

    Article  CAS  Google Scholar 

  30. Victor G, Kurt L, Loening AD, McNaught PS. Compendium of chemical terminology: IUPAC recommendations, IUPAC chemical data series. Professional and industrial computing series. Hoboken: Blackwell Scientific Publications; 1987.

    Google Scholar 

  31. Fernando MP, Joaquin FPB. The kinetic rate law for autocatalytic reactions. J Chem Educ. 1987;64(11):925.

    Article  Google Scholar 

  32. Bohn MA. Problems and faulty uses with the Prout–Tompkins description of autocatalytic reactions and the solutions. J Therm Anal Calorim. 2014;116:1061–72.

    Article  CAS  Google Scholar 

  33. Bohn MA. Kinetic description of mass loss data for the assessment of stability, compatibility and aging of energetic components and formulations exemplified with ε-CL20. Propellants Explos Pyrotech. 2002;27:125–35.

    Article  CAS  Google Scholar 

  34. Eisenreich N, Pfeil A. Non-linear least-squares fit of non-isothermal thermoanalytical curves: reinvestigation of the kinetics of the autocatalytic decomposition of nitrated cellulos. Thermochim Acta. 1983;61(1–2):13–21.

    Article  CAS  Google Scholar 

  35. Kossoy A, Hofelich T. Methodology and software for assessing reactivity ratings of chemical systems. Process Saf Prog. 2003;22(04):235–40.

    Article  CAS  Google Scholar 

  36. Kossoy A, Akhmetshin YG. Simulation-based approach to design of inherently safer processes. Process Saf Environ Prot. 2012;90(5):349–56.

    Article  CAS  Google Scholar 

  37. Gao HX, Zhang H, Zhao FQ, et al. Kinetic behavior of the exothermic decomposition reaction of N-guanylurea dinitramide. Phys Chim Sin Acta. 2008;24(3):453–8.

    Article  CAS  Google Scholar 

  38. Chen JR, Cheng SY, Yuan MH, et al. Hierarchical kinetic simulation for autocatalytic decomposition of cumene hydroperoxide at low temperatures. J Therm Anal Calorim. 2009;96(3):751–8.

    Article  CAS  Google Scholar 

  39. Chen KY, Wu SH, Wang YW, et al. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC. J Loss Prev Process Ind. 2008;21(1):101–9.

    Article  CAS  Google Scholar 

  40. Kossoy A, Misharev P et al. Peculiarities of calorimetric data processing for kinetics evaluation in reaction hazard assessment. In: 53rd annual calorimetry conference. Midland, Michigan, USA; 1998. pp. 9–14.

  41. Kossoy A, Singh J, Koludarova EY. Mathematical methods for application of experimental adiabatic data—an update and extension. J Loss Prev Process Ind. 2015;33:88–100.

    Article  Google Scholar 

  42. Benin AI, Kossoy A, Smykalov PU. Automated system for kinetic research in thermal analysis: I. General description of an automated system. J Ther Anal Calorim. 1992;38(5):1151–65.

    Article  CAS  Google Scholar 

  43. Benin AI, Kossoy A, Sharikov FY. Automated system for kinetic research in thermal analysis: II. Organization of kinetic experiments in ASKR. J Ther Anal Calorim. 1992;38(5):1167–80.

    Article  CAS  Google Scholar 

  44. Kossoy A, Koludarova E. Specific features of kinetics evaluation in calorimetric studies of runaway reactions. J Loss Prev Process Ind. 1995;8(4):229–35.

    Article  Google Scholar 

  45. Misharev P, Kossoy A, Benin A. Methodology and software for numerical simulation of thermal explosion. Process Saf Environ Prot. 1996;74(1):17–24.

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Natural Science Foundation of Jiangsu Province, China (No: BK20200495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhao, X., Meng, F. et al. Model identification and classification of autocatalytic decomposition kinetics. J Therm Anal Calorim 148, 5455–5470 (2023). https://doi.org/10.1007/s10973-023-12072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12072-w

Keywords

Navigation