Skip to main content
Log in

Improved luminosity of a new tracer pyrotechnic of Mg:BaO2:Ba(NO3)2:Viton using response surface methodology

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, a new formulation based on magnesium fuel, oxidants of barium peroxide and barium nitrate and Viton binder is presented for a tracer pyrotechnic. Differential scanning calorimetry curves showed the ignition temperatures 355, 420 and 610 °C, respectively, for samples of Mg:BaO2, Mg:BaO2:Ba(NO3)2 and Mg:Ba(NO3)2, also the sensitivity to friction of the prepared pyrotechnics is obtained 15.3, 22.8 and 34.7 N, respectively. So, the tracer pyrotechnic of Mg:BaO2:Ba(NO3)2 showed a good ignition temperature in addition to acceptable safety. The mass ratio of the ingredients in Mg:BaO2:Ba(NO3)2:Viton is optimized using the experimental design by response surface methodology (RSM) for improvement its luminosity. Mass ratios of BaO2/Mg, Ba(NO3)2/Mg and %mass of Viton used as predictor variables. Also, the response variables were luminous intensity and luminous time. The statistics parameter of P-value for each predictor variable is obtained < 0.05 which indicates the significant effect of predictor variables on luminosity of tracer pyrotechnic. Also, the P-value of lack-of-fit of both response variables is > 0.05 that showed the proposed statistical models fits well. The luminous intensity 16,287 ± 309 in terms of candelas unit and luminous time 0.445 ± 0.029 s are obtained in optimized parameters 0.977, 1.804 and 7.37, respectively, for mass ratios of BaO2/Mg, Ba(NO3)2/Mg and %mass of Viton binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moretti JD, Csernica CM, Poret JC, Shaw AP, Carlucci NE, Seiz MG, Conway JD. Evaluation of a sustainable pyrotechnic tracer composition for small caliber ammunition. ACS Sustain Chem Eng. 2017;5:10657–61.

    Article  CAS  Google Scholar 

  2. Sadek R, Kassem M, Abdo M, Elbasuney S. Novel yellow colored flame compositions with superior spectral performance. Def Technol. 2017;13:33–9.

    Article  Google Scholar 

  3. Klingenberg G. Experimental study on the performance of pyrotechnic igniters. Propellants Explos Pyrotech. 1984;9:91–107.

    Article  CAS  Google Scholar 

  4. Sadek R, Kassem M, Abdo M, Elbasuney S. Novel blue flare tracer with enhanced color quality and luminous intensity. J Luminescence. 2018;195:8–13.

    Article  CAS  Google Scholar 

  5. Pouretedal HR, Ravanbod M. Kinetic study of ignition of Mg/NaNO3 pyrotechnic by using non-isothermal TG/DSC technique. J Therm Anal Calorim. 2015;119:2281–8.

    Article  CAS  Google Scholar 

  6. Barisin D, Batinic-Haberle I. The influence of the various types of binder on the burning characteristics of the magnesium-, boron-, and aluminum-based igniters. Propellants Explos Pyrotech. 1994;19:127–32.

    Article  CAS  Google Scholar 

  7. Ravanbod M, Pouretedal HR, Amini MK, Ebadpour R. Kinetic study of potassium chlorate thermal decomposition using non-isothermal TG/DSC technique. Cent Eur J Energ Mater. 2016;13:261–70.

    Article  Google Scholar 

  8. Zhu CG, Wang HZ, Min L. Ignition temperature of magnesium powder and pyrotechnic composition. J Energ Mater. 2014;32:219–26.

    Article  CAS  Google Scholar 

  9. Babar Z, Malik AQ. Thermal decomposition, ignition and kinetic evaluation of magnesium and aluminium fuelled pyrotechnic compositions. Cent Eur J Energ Mater. 2015;12:579–92.

    CAS  Google Scholar 

  10. Sadek R, Kassem M, Abdo M, Elbasuney S. Spectrally adapted red flare tracers with superior spectral performance. Def Technol. 2017;13:406–12.

    Article  Google Scholar 

  11. Pouretedal HR, Abadpour R. Application of non-isothermal of thermogravimetric method to interpret the decomposition kinetics of NaNO3, KNO3 and KClO4. Inter J Thermophysic. 2014;35:942–51.

    Article  CAS  Google Scholar 

  12. Barros L, Pinheiro A P M, Camara J da E, Iha K. Qualification of magnesium/teflon/viton pyrotechnic composition used in rocket motors ignition system. J Aerosp Technol Manag. 2016;8:130−136.

  13. Conkling JA, Mocella C. Chemistry of pyrotechnics, basic principles and theory. 2nd ed. Taylor & Francis Group: CRC Press, Boca Raton; 2011.

    Google Scholar 

  14. Pouretedal HR, Loh MS. Study the ratio of fuel to oxidant on the kinetic of ignition reaction of Mg/Ba(NO3)2 and Mg/Sr(NO3)2 pyrotechnics by non-isothermal TG/DSC technique. J Therm Anal Colorim. 2018;132:1307–15.

    Article  CAS  Google Scholar 

  15. Adhikary S, Sekhar H, Thakur GD. Optimization of compressive strength of MTV decoy flare pellets by Taguchi method. Part Sci Technol. 2020;39:338–43.

    Article  Google Scholar 

  16. Beck MW, Brown ME. Modification of the burning rate of antimony/potassium permanganate pyrotechnic delay compositions. Combust Flame. 1986;66:67–75.

    Article  CAS  Google Scholar 

  17. Ambekar A, Kim M, Lee WH, Yoh JJ. Characterization of display pyrotechnic propellants: burning rate. Appl Therm Eng. 2017;121:761–7.

    Article  CAS  Google Scholar 

  18. Zeman S, Jungová M. Sensitivity and performance of energetic materials. Propellants Explos Pyrotech. 2016;41:426–51.

    Article  CAS  Google Scholar 

  19. de Klerk WPC, Colpa W, van Ekeren PJ. Ageing studies of magnesium-sodium nitrate pyrotechnic compositions. J Therm Anal Calorim. 2006;85:203–7.

    Article  Google Scholar 

  20. Tribelhorn MJ, Brown ME. Thermal decomposition of barium and strontium peroxides. Thermochim Acta. 1995;255:143–54.

    Article  CAS  Google Scholar 

  21. Wojewódka A, Gerlich M. Termite pyrotechnic compositions of iron and alkaline earth metals peroxides. High Energy Mater. 2020;12:55–72.

    Google Scholar 

  22. Klapötke TM, Krumm B, Rusan M, Sabatini JJ. Improved green-light-emitting pyrotechnic formulations based on tris(2,2,2-trinitroethyl)borate and boron carbide. Chem Commun. 2014;50:9581–3.

    Article  Google Scholar 

  23. Singh H, Rag RB. Effect of particle size on combustion of magnesium-sodium nitrate propellants. Combust Sci Technol. 1992;81:233–42.

    Article  CAS  Google Scholar 

  24. Brent GF, Harding MD. Surfactant coatings for the stabilization of barium peroxide and lead dioxide in pyrotechnic compositions. Propellants Explos Pyrotech. 1995;20:300–3.

    Article  CAS  Google Scholar 

  25. Pouretedal HR, Bashiri Z, Nasiri M, Arab A. Photo-treatment of TNT wastewater in presence of nanocomposite of WO3/Fe3O4. Part Sci Technol. 2021;39:971–80.

    Article  CAS  Google Scholar 

  26. Pouretedal HR, Shamsi M, Arabiyan D. Statistical optimization of nitrocellulose removal from industrial wastewater by electrocoagulation using response surface method. Desalin Water Treat. 2021;212:212–9.

    Article  CAS  Google Scholar 

  27. Ferreira MPS, Santos PSM, Duarte AC. Oxidation of small aromatic compounds in rainwater by UV/H2O2: Optimization by response surface methodology. Sci Total Environ. 2022;815: 152857.

    Article  CAS  PubMed  Google Scholar 

  28. Bieganska J, Baranski K. Experiments with pyrotechnic compositions based on a mathematical model—part I evaluation of the applicability of mathematical models in developing pyrotechnic compositions producing an acoustic effect. Energies. 2021;14:8548.

    Article  CAS  Google Scholar 

  29. Basha IK, El-Monaem EMA, Khalifa RE, Omer AM, Eltaweil AS. Sulfonated graphene oxide impregnated cellulose acetate floated beads for adsorption of methylene blue dye: optimization using response surface methodology. Sci Rep. 2022;12:9339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bao L, Wu D. Catalytic properties of SmMnO3/cordierite monolithic catalysts: acid treatment and calcination process optimization using response surface methodology. J Chem Sci. 2022;134:46.

    Article  CAS  Google Scholar 

  31. Sibiya NP, Duodu GA, Tetteh EK, Rathilal S. Model prediction of coagulation by magnetised rice starch for wastewater treatment using response surface methodology (RSM) with artificial neural network (ANN). Sci African. 2022;17: e01282.

    Article  CAS  Google Scholar 

  32. Yao M, Chen L, Yu J, Peng J. Thermoanalytical investigation on pyrotechnic mixtures containing Mg–Al alloy powder and barium nitrate. Proc Eng. 2012;45:567–73.

    Article  CAS  Google Scholar 

  33. Zhang X, Chen X, Feng MH, Zheng ZF, Pan GP, Lv HP. Influences of bulking and porous structure on barium nitrate as pyrotechnic oxidants. Adv Mater Res. 2012;550:27–31.

    Google Scholar 

  34. Yu Y, Yang Z, Wang F, Liu C, Deng L. A novel environment-friendly polyester binder to reduce the pollution of particulate matter produced by combustion of pyrotechnic. J Clean Prod. 2021;278: 123733.

    Article  CAS  Google Scholar 

  35. Bagherpour S, Mahdavi M, Abedini E. Investigation of thermal behavior of energetic and non-energetic binders on luminous efficiency of high performance miniature flares. Def Technol. 2019;15:193–7.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the research committee of Malek-Ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pouretedal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouretedal, H.R., Sattar, S. & Zare, A. Improved luminosity of a new tracer pyrotechnic of Mg:BaO2:Ba(NO3)2:Viton using response surface methodology. J Therm Anal Calorim 148, 5209–5216 (2023). https://doi.org/10.1007/s10973-023-12070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12070-y

Keywords

Navigation