Skip to main content

Advertisement

Log in

Application of Non-Isothermal Thermogravimetric Method to Interpret the Decomposition Kinetics of \(\hbox {NaNO}_{3}, \hbox {KNO}_{3}\), and \(\hbox {KClO}_{4}\)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The non-isothermal thermogravimetric method was used to study the thermal decomposition of \(\hbox {KClO}_{4}, \hbox {KNO}_{3}\), and \(\hbox {NaNO}_{3}\) at heating rates of (5, 10, 15, and 20) \(\hbox {K}\cdot \hbox {min}^{-1}\). The activation energy of thermal decomposition reactions was computed by isoconversional methods of Ozawa–Flynn–Wall, Kissinger–Akahiro–Sunose, and Friedman equations. Also, the kinetic triplet of the thermal decomposition of salts was determined by the model-fitting method of the modified Coats–Redfern equation. The activation energies of \(\hbox {KClO}_{4}, \hbox {KNO}_{3}\), and \(\hbox {NaNO}_{3}\) of (293 to 307, 160 to 209, and 192 to 245) \(\hbox {kJ}\cdot \hbox {mol}^{-1}\), respectively, are obtained by non–isothermal isoconversional methods. The modified Coats and Redfern method showed that the most probable mechanism functions \(g(\alpha )\) of \([-\hbox {ln}(1 - \alpha )]^{1/3}\) (model A3: Arami–Erofeev equation) and \((1 - \alpha )^{-1}- 1\) (model F2: second order) can be used to predict the decomposition mechanisms of \(\hbox {KClO}_{4}\), \(\hbox {KNO}_{3}\), and \(\hbox {NaNO}_{3}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.-S. Lee, C.-K. Hsu, K.-S. Jaw, Thermochim. Acta 367, 381 (2001)

    Article  Google Scholar 

  2. D. Seetharamacharyulu, R.M. Mallya, V.R. Pai Vernerneker, J. Thermal Anal. 22, 17 (1981)

    Article  Google Scholar 

  3. H. Ellern, Modern Pyrotechnics (Chemical Publishing Co., Inc., New York, 1961)

    Google Scholar 

  4. S.D. Brown, E.L. Charsley, S.J. Goodall, P.G. Laye, J.J. Rooney, T.T. Griffiths, Thermochim. Acta 401, 53 (2003)

    Article  Google Scholar 

  5. E.S. Freeman, J. Am. Chem. Soc. 79, 838 (1957)

    Article  Google Scholar 

  6. T. Bauer, D. Laing, R. Tamme, Int. J. Thermophys. 33, 91 (2012)

    Article  ADS  Google Scholar 

  7. H. Chen, N. Liu, J. Am. Ceram. Soc. 93, 548 (2010)

    Article  Google Scholar 

  8. D. Dollimore, S. Lerdkanchanaporn, K.S. Alexander, Thermochim. Acta 290, 73 (1997)

    Article  Google Scholar 

  9. X. Gao, D. Chen, D. Dollimore, Thermochim. Acta 223, 75 (1993)

    Article  Google Scholar 

  10. K. Chrissafis, J. Therm. Anal. Calorim. 95, 273 (2009)

    Article  Google Scholar 

  11. S. Hosseini, S. Pourmortazavi, S. Hajimirsadeghi, Combust. Flame 141, 322 (2005)

    Article  Google Scholar 

  12. Y. Hoshino, T. Utsunomiya, O. Ade, Bull. Chem. Soc. Jpn. 54, 1385 (1981)

    Article  Google Scholar 

  13. H.E. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  14. T. Ozawa, H. Isozaki, A. Negishi, Thermochim. Acta 1, 545 (1970)

    Article  Google Scholar 

  15. J.H. Flynn, Thermochim. Acta 4, 323 (1966)

    Google Scholar 

  16. J.W. Park, H.P. Lee, H.T. Kim, K.O. Yoo, Polym. Degrad. Stab. 67, 535 (2000)

    Article  Google Scholar 

  17. P.E. Fischer, C.S. Jou, S.S. Gokalgandhi, Ind. Eng. Chem. Res. 26, 1037 (1987)

    Article  Google Scholar 

  18. R. Ebrahimi-Kahrizsangi, M.H. Abbasi, Trans. Nonferr. Met. Soc. China 18, 217 (2008)

    Article  Google Scholar 

  19. L. Gavernet, M. Luisa Villalba, L. Bruno Blanch, I. Daniela Lick, Eur. J. Chem. 4, 44 (2013)

    Article  Google Scholar 

  20. P. Noisong, C. Danvirutai, Ind. Eng. Chem. Res. 49, 3146 (2010)

    Article  Google Scholar 

  21. N. Sbirrazzuoli, L. Vincent, A. Mija, N. Guigo, Chemom. Intell. Lab. Syst. 96, 219 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Pouretedal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouretedal, H.R., Ebadpour, R. Application of Non-Isothermal Thermogravimetric Method to Interpret the Decomposition Kinetics of \(\hbox {NaNO}_{3}, \hbox {KNO}_{3}\), and \(\hbox {KClO}_{4}\) . Int J Thermophys 35, 942–951 (2014). https://doi.org/10.1007/s10765-014-1636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1636-y

Keywords

Navigation