Skip to main content
Log in

Evaluating the convective heat transfer of graphene oxide–gold hybrid nanofluid flow in CPU

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal performance of a novel hybrid nanofluid containing graphene oxide (GO)–gold/water and GO/water nanofluid in cooling a computer’s CPU is carried out experimentally. Single-layer graphene oxide is used as working fluid by combining specific amounts of gold nanoparticle suspension with varying concentrations (0.0044–0.0114 mass%) and Reynolds number (676–2185) to optimize the overall device performance. The obtained results revealed that GO/water nanofluid and GO–gold/water hybrid nanofluid reduced the surface temperature of the CPU by 10.6% and 16.2%, respectively, compared with the DI water. Also, the results show that the convective heat transfer coefficient is improved by 36.36% with GO–gold/water hybrid nanofluid (0.0094 mass%) and Re = 2185. In addition, new correlations have been developed for predicting the Nusselt number of GO–gold/water hybrid nanofluid and GO/water nanofluid, based on the experimental data. Overall, the hybrid nanofluid is highly recommended as a preferred cooling in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Au:

Gold

BNNT:

Boron nitride nanotubes

C:

Concentration of nanofluids

Cu:

Copper

CPU:

A central processing unit

DLS:

Dynamic light scattering

GO:

Graphene oxide

LIF:

Laser-induced fluorescence

MCHS:

Microchannel heat sink

MWCNT:

Multi-wall carbon nanotubes

Nu:

Nusselt number

NaAuCl4 :

Sodium tetrachloroaurate

NaBH4 :

Sodium borohydride

OFHSMC:

Oblique fin heat sink microchannel

PIV:

Particle image velocimetry

q m :

Mass flow rate

SEM:

Scanning electron microscope

Re:

Reynolds number

SWCNT:

Single-wall carbon nanotubes

TEM:

Transmission electron microscopy

W :

Mass fraction

ɸ :

Volume fraction

δ :

Copper thickness

bf:

Base fluid

hnf:

Hybrid nanofluid

hs:

Heat sink

np:

Nanoparticle

w:

Wall

References

  1. Smalley RE. Future global energy prosperity: the terawatt challenge. MRS Bull. 2005;30:412–7. https://doi.org/10.1557/mrs2005.124.

    Article  Google Scholar 

  2. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141–50. https://doi.org/10.1016/j.partic.2009.01.007.

    Article  CAS  Google Scholar 

  3. Moraveji A, Toghraie D. Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. Int J Heat Mass Transf. 2017;1(113):432–43.

    Article  Google Scholar 

  4. Fakhar MH, Fakhar A, Tabatabaei H. Nanotechnology efficacy on improvement of acute velocity in fluid-conveyed pipes under thermal load. Int J Hydromechatron. 2021;4(2):142–54.

    Article  Google Scholar 

  5. Keshtegar B, Nehdi ML. Machine learning model for dynamical response of nano-composite pipe conveying fluid under seismic loading. Int J Hydromechatron. 2020;3(1):38–50.

    Article  Google Scholar 

  6. Chen C, Liu J, Cheng J, Wang Z. Oxidation mechanism for coal-assisted water electrolysis for hydrogen production: evolution of different structures in coal molecules with reaction depth. Fuel. 2022;1(321):123910.

    Article  Google Scholar 

  7. Al-Kbodi BH, Rajeh T, Zhang H. Irreversibility distribution in heat transfer process of hollow paddle-shaft components. Int J Hydromechatron. 2020;3(2):167–89.

    Article  Google Scholar 

  8. Lawag RA, Ali HM. Phase change materials for thermal management and energy storage: a review. J Energy Storage. 2022;55:105602.

    Article  Google Scholar 

  9. Alqahtani S, Ali HM, Farukh F, Kandan K. Experimental and computational analysis of polymeric lattice structure for efficient building materials. Appl Therm Eng. 2023;218:119366.

    Article  CAS  Google Scholar 

  10. Li J, Ma B, Wang R, Han L. Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron Reliab. 2011;51:2210–5. https://doi.org/10.1016/j.microrel.2011.05.006.

    Article  CAS  Google Scholar 

  11. Li J, Zhang X, Zhou C, Zheng J, Ge D, Zhu W. New applications of an automated system for high-power LEDs. IEEE/ASME Trans Mechatronics. 2016;21:1035–42. https://doi.org/10.1109/TMECH.2015.2487507.

    Article  Google Scholar 

  12. Li J, Wang W, Xia Y, He H, Zhu W. The soft-landing features of a micro-magnetorheological fluid damper. Appl Phys Lett. 2015. https://doi.org/10.1063/1.4903924.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li J, Han L, Duan J, Zhong J. Interface mechanism of ultrasonic flip chip bonding. Appl Phys Lett. 2007;90:2005–8. https://doi.org/10.1063/1.2747673.

    Article  CAS  Google Scholar 

  14. Li J, Wang D, Duan J, He H, Xia Y, Zhu W. Structural design and control of a small-MRF damper under 50 N soft-landing applications. IEEE Trans Ind Inform. 2015;11:612–9. https://doi.org/10.1109/TII.2015.2413353.

    Article  Google Scholar 

  15. Zhang Y, Liu C. Numerical simulation of heat transfer performance of airborne condenser based on AMEsim. J Ordnance Equip Eng. 2021;4:233–7.

    Google Scholar 

  16. Tang A, Dai J, Wang M, He F, Lin S. Numerical simulation of muzzle flow field of small caliber fin-stabilized projectile. J Ordnance Equip Eng. 2021;6:34–7.

    Google Scholar 

  17. Hussain I, Bibi F, Bhat SA, Sajjad U, Sultan M, Ali HM, Azam MW, Kaushal SK, Hussain S, Yan W-M. Evaluating the parameters affecting the direct and indirect evaporative cooling systems. Eng Anal Bound Elements. 2022;145:211–23.

    Article  Google Scholar 

  18. Bazdar H, Toghraie D, Pourfattah F, Akbari OA, Nguyen HM, Asadi A. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J Therm Anal Calorim. 2020;139(3):2365–80.

    Article  CAS  Google Scholar 

  19. Arasteh H, Mashayekhi R, Goodarzi M, Motaharpour SH, Dahari M, Toghraie D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. J Therm Anal Calorim. 2019;138:1461–76.

    Article  CAS  Google Scholar 

  20. Guo ZY. Frontier of heat transfer-microscale heat transfer. Adv Mech. 2000;30:1–6.

    Google Scholar 

  21. Toghraie D, Mashayekhi R, Arasteh H, Sheykhi S, Niknejadi M, Chamkha AJ. Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions. Int J Numer Meth Heat Fluid Flow. 2019;30(4):1795–814.

    Article  Google Scholar 

  22. Pourrajab R, Noghrehabadi A, Behbahani M. Thermo-hydraulic performance of mesoporous silica with Cu nanoparticles in helically grooved tube. Appl Therm Eng. 2021;25(185):116436.

    Article  Google Scholar 

  23. Usman M, Hamid M, Haq RU, Wang W. Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach. Int J Heat Mass Transf. 2018;123:888–95. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.030.

    Article  CAS  Google Scholar 

  24. Zawawi NNM, Azmi WH, Ghazali MF, Ali HM. Performance of air-conditioning system with different nanoparticle composition ratio of hybrid nanolubricant. Micromachines. 2022;1871:13. https://doi.org/10.3390/mi13111871.

    Article  Google Scholar 

  25. Mashayekhi R, Khodabandeh E, Akbari OA, Toghraie D, Bahiraei M, Gholami M. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J Therm Anal Calorim. 2018;134:2305–15.

    Article  CAS  Google Scholar 

  26. Mostafazadeh A, Toghraie D, Mashayekhi R, Akbari OA. Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single-and two-phase approaches. J Therm Anal Calorim. 2019;138(1):779–94.

    Article  CAS  Google Scholar 

  27. Noghrehabadi A, Pourrajab R, Ghalambaz M. Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int J Therm Sci. 2012;54:253–61. https://doi.org/10.1016/j.ijthermalsci.2011.11.017.

    Article  CAS  Google Scholar 

  28. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  CAS  Google Scholar 

  29. Noghrehabadi A, Pourrajab R. Experimental investigation of forced convective heat transfer enhancement of γ-Al2O3/water nanofluid in a tube. J Mech Sci Technol. 2016;30:943–52. https://doi.org/10.1007/s12206-016-0148-z.

    Article  Google Scholar 

  30. Pourrajab R, Noghrehabadi A, Behbahani M, Hajidavalloo E. An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09300-y.

    Article  Google Scholar 

  31. Saeed M, Kim M-H. Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int J Heat Mass Transf. 2018;120:671–82.

    Article  CAS  Google Scholar 

  32. Sun B, Liu H. Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator. Appl Therm Eng. 2017;115:435–43.

    Article  CAS  Google Scholar 

  33. S.S. Khaleduzzaman, S. Rahman, J. Selvaraj, I.M. Mahbubul, M.R. Sohel, I.M. Shahrul, Nanofluids for thermal performance improvement in cooling of electronic device, in Advanced Materials Research, Trans Tech Publications, 2014: pp, 218–223.

  34. Qi C, Hu J, Liu M, Guo L, Rao Z. Experimental study on thermo-hydraulic performances of CPU cooled by nanofluids. Energy Convers Manag. 2017;153:557–65.

    Article  CAS  Google Scholar 

  35. Huang D, Wu Z, Sunden B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Therm Fluid Sci. 2016;72:190–6. https://doi.org/10.1016/j.expthermflusci.2015.11.009.

    Article  CAS  Google Scholar 

  36. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60.

    Article  CAS  Google Scholar 

  37. Nimmagadda R, Venkatasubbaiah K. Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers. Heat Mass Transf Und Stoffuebertragung. 2017;53:2099–115. https://doi.org/10.1007/s00231-017-1970-2.

    Article  CAS  Google Scholar 

  38. Shamsuddin HS, Estellé P, Navas J, Mohd-Ghazali N, Mohamad M. Effects of surfactant and nanofluid on the performance and optimization of a microchannel heat sink. Int J Heat Mass Transf. 2021. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121336.

    Article  Google Scholar 

  39. Jung SY, Park H. Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink. Int J Heat Mass Transf. 2021;179:121729. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121729.

    Article  CAS  Google Scholar 

  40. Ho CJ, Wei LC, Li ZW. An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl Therm Eng. 2010;30:96–103.

    Article  CAS  Google Scholar 

  41. Roberts NA, Walker DG. Convective performance of nanofluids in commercial electronics cooling systems. Appl Therm Eng. 2010;30:2499–504.

    Article  CAS  Google Scholar 

  42. Fazeli SA, Hashemi SMH, Zirakzadeh H, Ashjaee M. Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices Microstruct. 2012;51:247–64.

    Article  CAS  Google Scholar 

  43. Ashjaee M, Goharkhah M, Khadem LA, Ahmadi R. Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink. Heat Mass Transf. 2015;51:953–64.

    Article  CAS  Google Scholar 

  44. Zhai YI, Xia GD, Liu XF, Li YF. Heat transfer enhancement of Al2O3–H2O nanofluids flowing through a micro heat sink with complex structure. Int Commun Heat Mass Transf. 2015;66:158–66.

    Article  CAS  Google Scholar 

  45. Khoshvaght-Aliabadi M, Sahamiyan M. Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS). Energy Convers Manag. 2016;108:197–308.

    Article  Google Scholar 

  46. Kalteh M, Abbassi A, Saffar-Avval M, Frijns A, Darhuber A, Harting J. Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Appl Therm Eng. 2012;36:260–8.

    Article  CAS  Google Scholar 

  47. Azizi Z, Alamdari A, Malayeri MR. Convective heat transfer of Cu-water nanofluid in a cylindrical microchannel heat sink. Energy Convers Manag. 2015;101:515–24.

    Article  CAS  Google Scholar 

  48. Azizi Z, Alamdari A, Malayeri MR. Thermal performance and friction factor of a cylindrical heat sink cooled by Cu-water nanofluid. Appl Therm Eng. 2016;99:970–8.

    Article  CAS  Google Scholar 

  49. Ahammed N, Asirvatham LG, Wongwises S. Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger. Exp Therm Fluid Sci. 2016;74:81–90.

    Article  CAS  Google Scholar 

  50. Ali HM, Arshad W. Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Convers Manag. 2015;106:793–803.

    Article  CAS  Google Scholar 

  51. Roshani M, Miry SZ, Hanafizadeh P, Ashjaee M. Hydrodynamics and heat transfer characteristics of a miniature plate pin-fin heat sink utilizing Al2O3-water and TiO2-water nanofluids. J Therm Sci Eng Appl. 2015;7:031007.

    Article  Google Scholar 

  52. Duangthongsuk W, Wongwises S. A comparison of the heat transfer performance and pressure drop of nanofluid-cooled heat sinks with different miniature pin fin configurations. Exp Therm Fluid Sci. 2015;69:111–8.

    Article  CAS  Google Scholar 

  53. Kumar V, Sarkar J. Particle ratio optimization of Al2O3-MWCNT hybrid nanofluid in minichannel heat sink for best hydrothermal performance. Appl Therm Eng. 2020;165:114546.

    Article  CAS  Google Scholar 

  54. Kumar V, Sarkar J. Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3–TiO2 hybrid nanofluid in minichannel heat sink with different mixture ratio. Powder Technol. 2019;345:717–27.

    Article  CAS  Google Scholar 

  55. Ambreen T, Saleem A, Ali HM, Shehzad SA, Park CW. Performance analysis of hybrid nanofluid in a heat sink equipped with sharp and streamlined micro pinfins. Powder Technol. 2019;355:552–63.

    Article  CAS  Google Scholar 

  56. Bazargan AM, Sharif F, Mazinani S, Naderi N. Highly conductive reduced graphene oxide transparent ultrathin film through joule-heat induced direct reduction. J Mater Sci Mater Electron. 2017;28:1419–27. https://doi.org/10.1007/s10854-016-5676-x.

    Article  CAS  Google Scholar 

  57. Larsson M, Hill A, Duffy J. Suspension stability; why particle size, zeta potential and rheology are important. Annu Trans Nord Rheol Soc. 2012;20:6.

    Google Scholar 

  58. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

  59. Sundar LS, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017;68:185–98. https://doi.org/10.1016/j.rser.2016.09.108.

    Article  CAS  Google Scholar 

  60. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7. https://doi.org/10.1016/S0017-9310(99)00369-5.

    Article  CAS  Google Scholar 

  61. Kline SJ. Describing uncertainty in single sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  62. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128:240–50. https://doi.org/10.1115/1.2150834.

    Article  Google Scholar 

  63. Mahesh KV, Linsha V, Peer Mohamed A, Ananthakumar S. Processing of 2D-MAXene nanostructures and design of high thermal conducting, rheo-controlled MAXene nanofluids as a potential nanocoolant. Chem Eng J. 2016;297:158–69. https://doi.org/10.1016/j.cej.2016.04.010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RM contributed to data curation and investigation. RP contributed to investigation, writing—original draft, conceptualization, supervision, formal analysis, and software. MB contributed to methodology, resources, writing—review and editing. AD-D contributed to visualization and investigation.

Corresponding authors

Correspondence to Rashid Pourrajab or Mohammad Behbahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, R., Pourrajab, R., Behbahani, M. et al. Evaluating the convective heat transfer of graphene oxide–gold hybrid nanofluid flow in CPU. J Therm Anal Calorim 148, 5765–5776 (2023). https://doi.org/10.1007/s10973-023-12064-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12064-w

Keywords

Navigation