Skip to main content
Log in

Sol-gel derived Ti-doped mesoporous silica–alumina: an efficient catalyst to recover energy sources from environmental hazard waste plastics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Waste plastics have been regarded as a chronic environmental threat because of their disposal problem. If we do not find a sustainable technology for waste plastic conversion, it will cover the whole planet and collapse the ecosystem. Waste low-density polyethylene (LDPE) and high-density polyethylene were pyrolyzed over sol-gel derived silica–alumina (ASA) and Ti-doped silica–alumina (ASA + Ti) catalysts. The catalysts were calcined at 500 °C and characterized using different conventional techniques, e.g., XRD, FTIR, TG/DTA, SEM, EDS, and BET. Based on characterization, it can be predicted that the nanoparticles are formed of rings via Si–O–M (Al or Ti) linkages, which improved their thermal stability and catalytic activity. The polymer and catalyst were taken at an optimized ratio of 25 m m−1 in a batch reactor for degradation. The Ti-doped silica–alumina catalyst showed the maximum conversion (96%) and gasoline selectivity (45.33%) at comparatively low temperatures (376 °C). The highest specific surface area, uniform mesoporosity, and bimetallic skeleton of the Ti-doped catalyst helped to achieve the best performance. The obtained liquid product comprised both branched aliphatic and aromatic hydrocarbons. The obtained result proves that the catalytic pyrolysis of polyolefin generally advances through carbonium ions, where the catalyst acts as a Lewis acid and Lewis base consecutively. Moreover, the synthesized catalyst plays a significant role in isomerization, cyclization, and aromatization reactions. Sources of approximately 44.13 MJ of energy can be recovered from 1 kg of postconsumer waste plastic. This waste-to-fuel technology should be commercialized because it is eco-friendly and cost-effective.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alabi OA, Ologbonjaye KI, Awosolu O, Alalade OE. Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Asses. 2019;5:021. https://doi.org/10.23937/2572-4061.1510021.

    Article  CAS  Google Scholar 

  2. Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019;5:6. https://doi.org/10.1057/s41599-018-0212-7.

    Article  Google Scholar 

  3. Nielsen TD, Hasselbalch J, Holmberg K, Stripple J. Politics and the plastic crisis: A review throughout the plastic life cycle. WIREs Energy Environ. 2020;9:e360. https://doi.org/10.1002/wene.360.

    Article  CAS  Google Scholar 

  4. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):1–5. https://doi.org/10.1126/sciadv.1700782.

    Article  CAS  Google Scholar 

  5. Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH. The United States’ contribution of plastic waste to land and ocean. Sci Adv. 2020;6:eabd0288. https://doi.org/10.1126/sciadv.abd0288.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rustagi N, Pradhan SK, Singh R. Public health impact of plastics: an overview. Indian J Occup Environ Med. 2011;15(3):100–3. https://doi.org/10.4103/0019-5278.93198.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thushari GGN, Senevirathna JDM. Plastic pollution in the marine environment. Heliyon. 2020;6(8):e04709. https://doi.org/10.1016/j.heliyon.2020.e04709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. North EJ, Halden RU. Plastics and environmental health: the road ahead. Rev Environ Health. 2013;28(1):1–8. https://doi.org/10.1515/reveh-2012-0030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aboulkas A, Harfi KE, Bouadili AE. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag. 2010;51:1363–9. https://doi.org/10.1016/j.enconman.2009.12.017.

    Article  CAS  Google Scholar 

  10. Dubdub I, Al-Yaari M. Pyrolysis of low density polyethylene: kinetic study using TGA data and ANN prediction. Polymers. 2020;12:891. https://doi.org/10.3390/polym12040891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q. Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. J Therm Anal Calorim. 2014;115:227–35. https://doi.org/10.1007/s10973-013-3228-7.

    Article  CAS  Google Scholar 

  12. Rahman M, Roy SC, Hassan MM, Mondal BK, Faruk MO, Rahman MA, Zahiduzzaman M, Sharmin A, Hosen MJ, Afroze M, Khan M, Nasreen Z, Matin MA. Catalytic pyrolysis of waste plastics into liquid hydrocarbon using mesoporous kaolin clay. J Bangladesh Acad Sci. 2020;44(1):1–12. https://doi.org/10.3329/jbas.v44i1.48559.

    Article  CAS  Google Scholar 

  13. Miandad R, Barakat MA, Rehan M, Aburiazaiza AS, Ismail IMI, Nizami AS. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts. Waste Manag. 2017;69:66–78. https://doi.org/10.1016/j.wasman.2017.08.032.

    Article  CAS  PubMed  Google Scholar 

  14. Galadima A, Masudi A, Muraza O. Towards low-temperature catalysts for sustainable fuel from plastic: a review. J Environ Chem Eng. 2021;9(6):106655. https://doi.org/10.1016/j.jece.2021.106655.

    Article  CAS  Google Scholar 

  15. Achilias DS, Roupakias C, Megalokonomos P, Lappas A, Antonakou EV. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater. 2007;149:536–42. https://doi.org/10.1016/j.jhazmat.2007.06.076.

    Article  CAS  PubMed  Google Scholar 

  16. Lopez A, Marco ID, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A. Catalytic pyrolysis of plastic wastes with two different types of catalytic: ZSM-5 zeolite and red mud. Appl Catal B Environ. 2011;104:211–9. https://doi.org/10.1016/j.apcatb.2011.03.030.

    Article  CAS  Google Scholar 

  17. Ojha DK, Vinu R. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J Anal Appl Pyrol. 2015;113:349–59. https://doi.org/10.1016/j.jaap.2015.02.024.

    Article  CAS  Google Scholar 

  18. Mondal BK, Islam MN, Hossain ME, Abser MN. Microstructural and mineralogical properties of acid and alkali activated coal fly ash. J Adv Chem Sci. 2019;5(1):612–4. https://doi.org/10.30799/jacs.201.19050102.

    Article  Google Scholar 

  19. Mondal BK, Guha F, Abser MN. Waste plastics-to-fuel using fly ash catalyst. Waste Dispos Sustain Energy. 2021;3:13–9. https://doi.org/10.1007/s42768-020-00058-5.

    Article  Google Scholar 

  20. Fadillah G, Fatimah I, Sahroni I, Musawwa MM, Mahlia TMI, Muraza O. Recent progress in low-cost catalysts for pyrolysis of plastic waste to fuels. Catalysts. 2021;11:837. https://doi.org/10.3390/catal11070837.

    Article  CAS  Google Scholar 

  21. IEA, World Energy Outlook 2018, IEA, Paris, 2018; https://doi.org/10.1787/weo-2018-en.

  22. Zaccheria F, Santoro F, Iftitah ED, Ravasio N. Brønsted and Lewis solid acid catalysts in the valorization of citronellal. Catalysts. 2018;8(10):410. https://doi.org/10.3390/catal8100410.

    Article  CAS  Google Scholar 

  23. Esposito S. Traditional sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials. 2019;12:668. https://doi.org/10.3390/ma12040668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu X, Shao G, Shen X, Cui S, Wang L. Novel Al2O3–SiO2 composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol-gel method. RSC Adv. 2016;6:5611. https://doi.org/10.1039/c5ra19764c.

    Article  CAS  Google Scholar 

  25. Hensen EJM, Poduval DG, Magusin PCMM, Coumans AE, van Veen JAR. Formation of acid sites in amorphous silica–alumina. J Catal. 2010;269:201–18. https://doi.org/10.1016/j.jcat.2009.11.008.

    Article  CAS  Google Scholar 

  26. Prado LASA, Sriyai M, Ghislandi M, Barros-Timmons A, Schulte K. Surface modification of alumina nanoparticles with silane coupling agents. J Br Chem Soc. 2010;21(12):2238–45. https://doi.org/10.1590/S0103-50532010001200010.

    Article  CAS  Google Scholar 

  27. Thommes M. Physical adsorption characterization of nanoporous materials. J Chem Eng Technol. 2010;82(7):1059–73. https://doi.org/10.1002/cite.201000064.

    Article  CAS  Google Scholar 

  28. Temuujin J, Burmaa G, Amgalan J, Okada K, Jadambaa T, MacKenzie KJD. Preparation of porous silica from mechanically activated kaolinite. J Porous Mater. 2001;8:233–8. https://doi.org/10.1023/A:1012244924490.

    Article  CAS  Google Scholar 

  29. Ishihara A, Negura H, Hashimoto T, Nasu H. Catalytic properties of amorphous silica-alumina prepared using malic acid as a matrix in catalytic cracking of n-dodecane. Appl Catal A. 2010;388:68–76. https://doi.org/10.1016/j.apcata.2010.08.027.

    Article  CAS  Google Scholar 

  30. Maldonado CS, Rosa JRDL, Ortiz CJL, Ramirez AH, Barraza FFC, Valente JS. Low concentration Fe-doped alumina catalysts using sol–gel and impregnation methods: the synthesis, characterization and catalytic performance during the combustion of trichloroethylene. Materials. 2014;7:2062–86. https://doi.org/10.3390/ma7032062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bernardona C, Osmana MB, Laugel G, Louis B, Pale P. Acidity versus metal-induced Lewis acidity in zeolites for Friedel-crafts acylation. C R Chim. 2017;20(1):20–9. https://doi.org/10.1016/j.crci.2016.03.008.

    Article  CAS  Google Scholar 

  32. Akubo K, Nahil MA, Williams PT. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. J Energy Inst. 2019;92:195–202. https://doi.org/10.1016/j.joei.2017.10.009.

    Article  CAS  Google Scholar 

  33. Carati A, Ferraris G, Guidotti M, Moretti G, Psaro R, Rizzo C. Preparation and characterization of mesoporous silica–alumina and silica–titania with a narrow pore size distribution. Catal Today. 2003;77:315–23. https://doi.org/10.1016/S0920-5861(02)00376-0.

    Article  CAS  Google Scholar 

  34. Aguado J, Sotelo JL, Serrano DP, Calles JA, Escola JM. Catalytic conversion of polyolefins into liquid fuels over MCM-41: comparison with ZSM-5 and amorphous SiO2−Al2O3. Energy Fuels. 1997;11:1225–31. https://doi.org/10.1021/ef970055v.

    Article  CAS  Google Scholar 

  35. Saber O, Gobara HM. Optimization of silica content in alumina–silica nanocomposites to achieve high catalytic dehydrogenation activity of supported Pt catalyst. Egypt J Petrol. 2014;23(4):445–54. https://doi.org/10.1016/j.ejpe.2014.11.001.

    Article  Google Scholar 

  36. Wu X, Shao G, Cui S, Wang L, Shen X. Synthesis of a novel Al2O3–SiO2 composite aerogel with a high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram Int. 2014;42(1):874–82. https://doi.org/10.1016/j.ceramint.2015.09.012.

    Article  CAS  Google Scholar 

  37. Agliullin MR, Talzi VP, Filippova NA, Bikbaeva VR, Bubennov SV, Prosochkina TR, Grigorieva NG, Narender N, Kutepov BI. Two-step sol-gel synthesis of mesoporous aluminosilicates: highly efficient catalysts for the preparation of 3,5-dialkylpyridines. Appl Petrochem Res. 2018;8:141–51. https://doi.org/10.1007/s13203-018-0202-0.

    Article  CAS  Google Scholar 

  38. Lee JW, Jang YI, Park WS, Kim SW, Lee BJ. Photocatalytic and pozzolanic properties of nano-SiO2/Al2O3–TiO2 powder for functional mortar. Materials. 2019;12:1037. https://doi.org/10.3390/ma12071037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lotus AF, Feaver RK, Britton LA, Bender ET, Perhay DA, Stojilovic N, Ramsier RD, Chase GG. Characterization of TiO2–Al2O3 composite fibers formed by electrospinning a sol-gel and polymer mixture. Mater Sci Eng B. 2010;167:55–9. https://doi.org/10.1016/j.mseb.2010.01.027.

    Article  CAS  Google Scholar 

  40. Ma Z, Chen W, Hu Z, Pan X, Dong G, Zhou S, Peng M, Li Y, Liao C, Xiao Q, Qiu J. Flexible and thermally stable SiO2–TiO2 composite micro fibers with hierarchical nano-heterostructure. RSC Adv. 2013;3:20132. https://doi.org/10.1039/c3ra43049a.

    Article  CAS  Google Scholar 

  41. Roy J, Das S, Maitra S. Mullitization of manganese-doped aluminosilicate diphasic gel. J Ceram Sci Technol. 2014;59(4):299–308. https://doi.org/10.4416/JCST2014-00016.

    Article  Google Scholar 

  42. Nampi PP, Moothetty P, Berry FJ, Mortimerc M, Warrier KG. Aluminosilicates with varying alumina–silica ratios: synthesis via a hybrid sol–gel route and structural characterization. Dalton Trans. 2010;39:5101–7. https://doi.org/10.1039/C001219J.

    Article  CAS  PubMed  Google Scholar 

  43. Wu X, Li W, Shao G, Shen X, Cui S, Zhou J, Wei Y, Chen X. Investigation on the textural and structural evolution of the novel crack-free equimolar Al2O3–SiO2–TiO2 ternary aerogel during thermal treatment. Ceram Int. 2017;43(5):4188–96. https://doi.org/10.1016/j.ceramint.2016.12.044.

    Article  CAS  Google Scholar 

  44. Murashkevich AN, Lavitskaya AS, Barannikova TI, Zharskii IM. Infrared absorption spectra and structure of TiO2–SiO2 composites. J Appl Spectrosc. 2008;75:730. https://doi.org/10.1007/s10812-008-9097-3.

    Article  CAS  Google Scholar 

  45. Riazian M. Nanostructural characterization, and lattice strain of TiO2–Al2O3–SiO2 coating on glass and SI(100) substrates. J Chil Chem Soc. 2016;61(2):2870–7. https://doi.org/10.4067/S0717-97072016000200005.

    Article  CAS  Google Scholar 

  46. Karhu M, Lagerbom J, Reponen PK, Ismailov A, Levanen E. Reaction heat utilization in aluminosilicate-based ceramics synthesis and sintering. J Cervalueci Technol. 2017;08(01):101–12. https://doi.org/10.4416/JCST2016-00094.

    Article  Google Scholar 

  47. Song K, Kim W, Suh C-Y, Bang J-H, Ahn J-W. Preparation of mullite–silica composites using silica–rich monophasic precursor obtained as a byproduct of mineral carbonation of blast-furnace slag. Minerals. 2018;8(5):219. https://doi.org/10.3390/min8050219.

    Article  CAS  Google Scholar 

  48. Mozgawa W, Fojud Z, Handke M, Jurga S. MAS NMR and FTIR spectra of framework aluminosilicates. J Mole Struct. 2002;614:281–7. https://doi.org/10.1016/S0022-2860(02)00262-4.

    Article  CAS  Google Scholar 

  49. Sing KSW, Williams RT. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol. 2004;22(10):773–82. https://doi.org/10.1260/0263617053499032.

    Article  CAS  Google Scholar 

  50. Thommes M, Kaneko K, Neimark AV, Olivier JP, Reinoso FR, Rouquerol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9):1051–69. https://doi.org/10.1515/pac-2014-1117.

    Article  CAS  Google Scholar 

  51. Wang R, Sang S, Zhu D, Liu S, Yu K. Pore characteristics and controlling factors of the lower Cambrian heating formation shale in northeast Jiangxi. China Energ Explor Exploit. 2018;36(1):43–65. https://doi.org/10.1177/0144598717723814.

    Article  CAS  Google Scholar 

  52. Alothman ZA. A review: fundamental aspects of silicate mesoporous materials. Materials. 2012;5:2874–902. https://doi.org/10.3390/ma5122874.

    Article  CAS  PubMed Central  Google Scholar 

  53. Miandad R, Barakat MA, Aburiazaizaa AS, Rehan M, Nizami AS. Catalytic pyrolysis of plastic waste: a review. Process Saf Environ Prot. 2016;102:822–38. https://doi.org/10.1016/j.psep.2016.06.022.

    Article  CAS  Google Scholar 

  54. Ariga K, Vinu A, Yamauchi Y, Ji Q, Hill JP. Nanoarchitectonics for mesoporous materials. Bull Chem Soc Jpn. 2012;85(1):1–32. https://doi.org/10.1246/bcsj.20110162.

    Article  CAS  Google Scholar 

  55. Li K, Lee SW, Yuan G, Lei J, Lin S, Weerachanchai P, Yang Y, Wang JY. Investigation into the catalytic activity of microporous and mesoporous catalysts in the pyrolysis of waste polyethylene and polypropylene mixture. Energies. 2016;9:431. https://doi.org/10.3390/en9060431.

    Article  CAS  Google Scholar 

  56. Forni L. Comparison of the methods for the determination of surface acidity of solid catalysts. Catal Rev Sci Eng. 2006;8(1):65–115. https://doi.org/10.1080/01614947408071857.

    Article  Google Scholar 

  57. Sivagami K, Kumar KV, Tamizhdurai P, Govindarajan D, Kumar M, Nambi I. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor. RSC Adv. 2022;12:7612–20. https://doi.org/10.1039/D1RA08673A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gopinath S, Devan PK, Pitchandi K. Production of pyrolytic oil from ULDP plastics using silica–alumina catalyst and used as fuel for DI diesel engine. RSC Adv. 2020;10:37266–79. https://doi.org/10.1039/D0RA07073D.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alqarni AO, Nabi RAU, Althobiani F, Naz MY, Shukrullah S, Khawaja HA, Bou-Rabee MA, Gommosani ME, Abdushkour H, Irfan M, Mahnashi MH. Statistical optimization of pyrolysis process for thermal destruction of plastic waste based on temperature-dependent activation energies and pre-exponential factors. Processes. 2022;10:1559. https://doi.org/10.3390/pr10081559.

    Article  CAS  Google Scholar 

  60. Eimontas J, Striugas N, Abdelnaby MA, Yousef S. Catalytic pyrolysis kinetic behavior and TG-FTIR-GC-MS analysis of metallized food packaging plastics with different concentrations of ZSM-5 zeolite catalyst. Polymers. 2021;13(5):702. https://doi.org/10.3390/polym13050702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ioelovich M. Energy potential of natural, synthetic polymers and waste materials—a review. Academ J Polym Sci. 2018;1(1):09–23. https://doi.org/10.19080/AJOP.2018.01.555553.

    Article  Google Scholar 

  62. Carvill J. Thermodynamics and heat transfer. Mechanical Engineer's data handbook. 1993;102–145. https://doi.org/10.1016/B978-0-08-051135-1.50008-X.

  63. Panda AK, Singh RK, Mishra DK. Thermolysis of waste plastics to liquid fuel a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sust Energ Rev. 2010;14:233–48. https://doi.org/10.1016/j.rser.2009.07.005.

    Article  CAS  Google Scholar 

  64. Verma R, Vinoda KS, Papireddy M, Gowda ANS. Toxic pollutants from plastic waste—a review. Procedia Environ Sci. 2016;35:701–8. https://doi.org/10.1016/j.proenv.2016.07.069.

    Article  CAS  Google Scholar 

  65. Rowat SC. Incinerator toxic emissions: a brief summary of human health effects with a note on regulatory control. Med Hypotheses. 1999;52(5):389–96. https://doi.org/10.1054/mehy.1994.0675.

    Article  CAS  PubMed  Google Scholar 

  66. Buekens AG, Huang H. Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes. Resour Conserv Recycl. 1998;23:163–81. https://doi.org/10.1016/S0921-3449(98)00025-1.

    Article  Google Scholar 

  67. Wang Y, Cheng L, Gu J, Zhang Y, Wu J, Yuan H, Chen Y. Catalytic pyrolysis of polyethylene for the selective production of monocyclic aromatics over the zinc-loaded ZSM-5 catalyst. ACS Omega. 2022;7(3):2752–65. https://doi.org/10.1021/acsomega.1c05401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gebre SH, Sendeku MG, Bahri M. Recent trends in the pyrolysis of non-degradable waste plastics. ChemistryOpen. 2021;10(12):1202–26. https://doi.org/10.1002/open.202100184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miskolczi N, Bartha L, Deak G. Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feedstocks. Polym Degrad Stabil. 2006;91(3):517–26. https://doi.org/10.1016/j.polymdegradstab.2005.01.056.

    Article  CAS  Google Scholar 

Download references

Funding

No endowment had been received from any donator in the public, commercial, or specific grant commission for this investigation.

Author information

Authors and Affiliations

Authors

Contributions

BKM contributed to conceptualization, visualization, methodology, investigation, software, data curation, and writing—original draft preparation. FG contributed to writing—reviewing and editing. MNA contributed to supervision and editing.

Corresponding author

Correspondence to Bijoy Kumar Mondal.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3534 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, B.K., Guha, F. & Abser, M.N. Sol-gel derived Ti-doped mesoporous silica–alumina: an efficient catalyst to recover energy sources from environmental hazard waste plastics. J Therm Anal Calorim 148, 5257–5270 (2023). https://doi.org/10.1007/s10973-023-12059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12059-7

Keywords

Navigation