Skip to main content
Log in

Effect of Zr grain refinement on solidification behavior of Mg–3Nd alloy by cooling curve thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of Zr content on the microstructure and solidification behavior of as-cast Mg–3Nd alloy was studied. It was found that adding Zr can effectively improve the microstructure of the Mg–3Nd alloy, resulting in a transition from coarse dendritic structures to finely-grained equiaxed structures. The size of the second phase also decreases and becomes more uniformly distributed. The optimal amount of Zr for refining the Mg–3Nd alloy was determined to be 0.4%, which resulted in a reduction in grain size from 2015 ± 189 to 68 ± 5 μm. Thermal analysis was used to determine the solidification parameters of the Mg–3Nd alloy. It was found that Zr refinement mainly affected the solidification behavior in the liquid region. With the increase of Zr content, the nucleation temperature (TN,α) of α-Mg increased, the nucleation undercooling (ΔTN,α) and the Recalescence undercooling (ΔTR,α) decreased. After the optimal refinement effect, the recalescence phenomenon disappeared, and the addition of Zr accelerated the formation of the solid phase. There is a good correlation between the solidification parameters in the liquid region and the grain size. With the refinement effect of Zr can be predicted by ΔTR,α, and the maximum first derivative in the liquid area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li J, Chen R, Ma Y, Ke W. Computer-aided cooling curve thermal analysis and microstructural characterization of Mg–Gd–Y–Zr system alloys. Thermochim Acta. 2014;590:232–41.

    Article  CAS  Google Scholar 

  2. Farahany S, Bakhsheshi-Rad HR, Idris MH, Kadir MRA, Lotfabadi AF, Ourdjini A. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg-0.5 Ca–xZn alloy systems. Thermochim Acta. 2012;527:180–9.

    Article  CAS  Google Scholar 

  3. Farahany S, Hasbullah M, Ourdjini A, Faris F, Ghandvar H. Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis. J Therm Anal Calorim. 2015;119:1593–601.

    Article  CAS  Google Scholar 

  4. Emadi D, Whiting LV, Nafisi S, Ghomashchi R. Application of thermal analysis in quality control of solidification process. J Therm Anal Calorim. 2005;81:235–42.

    Article  CAS  Google Scholar 

  5. Malekan M, Shabestari SG. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2011;103:453–8.

    Article  CAS  Google Scholar 

  6. Stefanescu DM. Thermal analysis—theory and applications in metalcasting. Int J Metalcast. 2015;9:7–22.

    Article  Google Scholar 

  7. Farahany S, Ourdjini A, Idris MH. The usage of computer-aided cooling curve thermal analysis to optimize eutectic refiner and modifier in Al–Si alloys. J Therm Anal Calorim. 2012;109(1):105–11.

    Article  CAS  Google Scholar 

  8. Pang S, Wu GH, Liu WC, Zhang L, Zhang Y, Conrad H, Ding WJ. Influence of cooling rate on solidification behavior of sand-cast Mg–10Gd–3Y–0.4Zr alloy. T Nonferr Metal Soc. 2014;24:3413–20.

    Article  CAS  Google Scholar 

  9. Ma T, Zhao SC, Wang LP, Wang ZW, Guo EJ, Feng YC, Li JF. Influence of solution treatment time on precipitation behavior and mechanical properties of Mg-2.0Nd-2.0Sm-0.4Zn-0.4Zr alloy. Materials. 2021;14:5037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu J, Su C. Microstructure evolution and mechanical properties of As-cast and As-compressed ZM6 magnesium alloys during the two-stage aging treatment process. Materials. 2021;14:7760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiełbus A. Microstructure and mechanical properties of Elektron 21 alloy after heat treatment. J Achiev Mater Manuf Eng. 2007;20:127–30.

    Google Scholar 

  12. Lyon P, Syed I, Heaney S. Elektron 21-an aerospace magnesium alloy for sand cast and investment cast applications. Adv Eng Mater. 2010;9:793–8.

    Article  Google Scholar 

  13. Sun M, Easton MA, Stjohn DH, Wu GH, Abbott TB, Ding WJ. Grain refinement of magnesium alloys by Mg–Zr Master alloys: the role of alloy chemistry and Zr particle number density. Adv Eng Mater. 2013;15:373–8.

    Article  CAS  Google Scholar 

  14. Ma Q, Hildebrand ZCG, StJohn DH. The loss ofdissolved zirconium in zirconium-refined magnesium alloys afterremelting. Metall Mater Trans A. 2009;40:2470–9.

    Article  Google Scholar 

  15. Ma Q, Zheng L, Graham D, Frost MT, StJohn DH. Settling of undissolved zirconium particles in puremagnesium melts. J Light Met. 2001;1:157–65.

    Article  Google Scholar 

  16. Shin JS, Lee ZH. Computer-aided cooling curve analysis of A356 aluminum alloy. Met Mater Int. 2004;10:89–96.

    Article  Google Scholar 

  17. Mostafapoor S, Malekan M, Emamy M. Effects of Zr addition on solidification characteristics of Al–Zn–Mg–Cu alloy using thermal analysis. J Therm Anal Calorim. 2018;134:1457–69.

    Article  CAS  Google Scholar 

  18. John DH, Ma Q, StJohn DH, Easton MA, Cao P, Hildebrand Z. Grain refinement of magnesium alloys. Metall Mater Trans A. 2005;36A:1669–79.

    Google Scholar 

  19. Easton MA, Gibson MA, Qiu D, Zhu SM, Gröbner J, Schmid-Fetzer R, Nie JF, Zhang MX. The role of crystallography and thermodynamics on phase selection in binary magnesium-rare earth (Ce or Nd) alloys. Acta Mater. 2012;60:4420–30.

    Article  CAS  Google Scholar 

  20. Ma Y, Zhang J, Xu C, Yi L, Zhang Y, Zhe Z. Effect of TiB2-doping on the microstructure and mechanical properties of Mg–Zn–Y–Mn alloy. Mater Sci Eng A. 2018;724:529–35.

    Article  CAS  Google Scholar 

  21. Shabestari SG, Malekan M. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J Alloy Compd. 2010;492:134–42.

    Article  CAS  Google Scholar 

  22. Yavari F, Shabestari SG. Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis. J Therm Anal Calorim. 2017;129:1–8.

    Article  Google Scholar 

  23. Ghoncheh M, Shabestari SG, Abbasi M. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique. J Therm Anal Calorim. 2014;117:1253–61.

    Article  CAS  Google Scholar 

  24. Malekan M, Dayani D, Mir A. Thermal analysis study on the simultaneous grain refinement and modification of 380.3 aluminum alloy. J Therm Anal Calorim. 2014;115:393–9.

    Article  CAS  Google Scholar 

  25. Stefanescu D. Science and engineering of casting solidification. New York: Springer; 2008.

    Google Scholar 

  26. Yang W, Lin L, Zhang J, Ji S, Fan Z. Heterogeneous nucleation in Mg–Zr alloy under die casting condition. Mater Lett. 2015;160:263–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Major Special Project of Heilongjiang Province (No.2020ZX03A03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Wang, L. & Cao, Y. Effect of Zr grain refinement on solidification behavior of Mg–3Nd alloy by cooling curve thermal analysis. J Therm Anal Calorim 148, 4049–4058 (2023). https://doi.org/10.1007/s10973-023-12026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12026-2

Keywords

Navigation