Skip to main content

Advertisement

Log in

Novel insight in thermo-oxidative kinetics of vitamin D-based supplement formulation using TG–DTG–DTA, ATR-FTIR and MALDI-MS techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work provides detailed mechanistic analysis of thermo-oxidative degradation behavior of vitamin D3—Ca (CaCO3 form) solid state supplement formulation. Analytical techniques such Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) were used for analysis of homogeneity of active pharmaceutical ingredients (APIs) throughout excipients contained within solid dosage forms. Information gained from MALDI-MS experiments was used to improve and better understand interactions present, later clearly disclosed through kinetic modeling. It was found that process mechanism proceeds via two single-step unbranched reactions and two steps of consecutive reactions. Key features include vitamin D3 meltings and degradation via hydrogen abstraction followed by addition of oxygen forming 1-hydroxy-vitamin D3 and further through its dehydration to 1-keto-vitamin D3. Identified product 1-hydroxy-vitamin D3 is substantial for enhancing the immune response of human body in fight against respiratory viruses. Another two degradation products, namely pyrocalciferol and isopyrocalciferol, produced by thermal isomerization at higher temperatures, were also identified. These vitamin epimers have crucial role in functioning of immune cells. Degradation process of mineral structure occurs through water molecules removal, forming anhydrous polymorph of CaCO3, where formation of solid (CaO) and gaseous (CO2) products participates in kinetically stabilized additive-functionalized amorphous CaCO3 crystallization. Confirmation of correctness of proposed degradation mechanism was verified by modulated dynamic (MD) predictions. Information obtained is valuable and suitable for safety evaluations of given supplement, but also could be applied for solid state forms, which are generally sensitive to oxidative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Zhao R, Zhang W, Ma C, Zhao Y, Xiong R, Wang H, Chen W, Zheng SG. Immunomodulatory function of Vitamin D and its role in autoimmune thyroid disease. Front Immunol. 2021;12:574967. https://doi.org/10.3389/fimmu.2021.574967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luo Y, Wu W, Gu J, Zhang X, Dang J, Wang J, Zheng Y, Huang F, Yuan J, Xue Y, Fu Q, Kandalam U, Colello J, Zheng SG. Human gingival tissue-derived MSC suppress osteoclastogenesis and bone erosion via CD39-adenosine signal pathway in autoimmune arthritis. EBioMedicine. 2019;43:620–31. https://doi.org/10.1016/j.ebiom.2019.04.058.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.

    Article  CAS  PubMed  Google Scholar 

  4. Pike JW, Christakos S. Biology and mechanisms of action of the vitamin D hormone. Endocrinol Metab Clin North Am. 2017;46(4):815–43.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goltzman D. Functions of vitamin D in bone. Histochem Cell Biol. 2018;149(4):305–12.

    Article  CAS  PubMed  Google Scholar 

  6. Battault S, Whiting SJ, Peltier SL, Sadrin S, Gerber G, Maixent JM. Vitamin D metabolism, functions and needs: From science to health claims. Eur J Nutr. 2013;52(2):429–41.

    Article  CAS  PubMed  Google Scholar 

  7. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12(7):2097. https://doi.org/10.3390/nu12072097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones G, Kaufmann M. Diagnostic aspects of vitamin D: clinical utility of vitamin D metabolite profiling. JBMR Plus. 2021;5(12):e10581. https://doi.org/10.1002/jbm4.10581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lips P, Gielen E, van Schoor NM. Vitamin D supplements with or without calcium to prevent fractures. Bonekey Rep. 2014;3:512. https://doi.org/10.1038/bonekey.2014.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lips P. Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol. 2010;121(1–2):297–300. https://doi.org/10.1016/j.jsbmb.2010.02.021.

    Article  CAS  PubMed  Google Scholar 

  11. Valladao DMS, De Oliveira LCS, Netto JZ, Ionashiro M. Thermal decomposition of some diuretic agents. J Therm Anal. 1996;46(5):1291–9.

    Article  CAS  Google Scholar 

  12. Dollimore D. A breath of fresh air. Thermochim Acta. 1999;340–341:19–29. https://doi.org/10.1016/S0040-6031(99)00250-6.

    Article  Google Scholar 

  13. Menen D, El-Ries M, Alexender KS, Rigo A, Dollimere D. A thermal analysis study of the decomposition of hydrochlorthiazide. Instrum Sci Technol. 2002;30:329–40.

    Article  Google Scholar 

  14. Ramos P. Application of thermal analysis to evaluate pharmaceutical preparations containing theophylline. Pharmaceuticals. 2022;15:1268. https://doi.org/10.3390/ph15101268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Juhász M, Takahashi S, Kitahara Y, Fujii T. Thermal decomposition of pyridoxine: an evolved gas analysis-ion attachment mass spectrometry study. Rapid Commun Mass Spectrom. 2012;26:759–64. https://doi.org/10.1002/rcm.6161.

    Article  CAS  PubMed  Google Scholar 

  16. de Souza SPMC, de Morais FE, dos Santos EV, Martinez-Huitle CA, Fernandes NS. Determination of calcium content in tablets for treatment of osteoporosis using thermogravimetry (TG). J Therm Anal Calorim. 2013;111:1965–70. https://doi.org/10.1007/s10973-011-2119-z.

    Article  CAS  Google Scholar 

  17. Urankar M, Reddy N, Ranka V. Formulation development and evaluation of cholecalciferol (vitamin D3) granules and tablets. J Chron Drug Del. 2015;6(1):11–6.

    CAS  Google Scholar 

  18. Jannasari N, Fathi M, Moshtaghian SJ, Abbaspourrad A. Microencapsulation of vitamin D using gelatin and cress seed mucilage: production, characterization and in vivo study. Int J Biol Macromol. 2019;129:972–9. https://doi.org/10.1016/j.ijbiomac.2019.02.096.

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Blanco JD, Shaw S, Benning LG. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale. 2011;3:265–71. https://doi.org/10.1039/c0nr00589d.

    Article  CAS  PubMed  Google Scholar 

  20. Myszka B, Schüßler M, Hurle K, Demmert B, Detsch R, Boccaccini AR, Wolf SE. Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid. RSC Adv. 2019;9:18232–44. https://doi.org/10.1039/C9RA01473J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Wu Y. Lubricants in pharmaceutical solid dosage forms. Lubricants. 2014;2:21–43. https://doi.org/10.3390/lubricants2010021.

    Article  CAS  Google Scholar 

  22. López-Pablos AL, Leyva-Porras CC, Silva-Cázares MB, Longoria-Rodríguez FE, Pérez-García SA, Vértiz-Hernández ÁA, Saavedra-Leos MZ. Preparation and characterization of high purity anhydrous β-lactose from α-lactose monohydrate at mild temperature. Int J Polym Sci. 2018;2018:10. https://doi.org/10.1155/2018/5069063.

    Article  CAS  Google Scholar 

  23. Abdullah AHD, Chalimah S, Primadona I, Hanantyo MHG. Physical and chemical properties of corn, cassava, and potato starchs. IOP Conf Ser Earth Env Sci. 2018;160:012003. https://doi.org/10.1088/1755-1315/160/1/012003.

    Article  Google Scholar 

  24. Mahmoodani F, Perera CO, Abernethy G, Fedrizzi B, Greenwood D, Chen H. Identification of vitamin D3 oxidation products using high-resolution and tandem mass spectrometry. J Am Soc Mass Spectrom. 2018;29(7):1442–55. https://doi.org/10.1007/s13361-018-1926-x.

    Article  CAS  PubMed  Google Scholar 

  25. Vurdelja BD, Dimitrijević SP, Dimitrijević SB, Kamberović ŽJ, Veličković SR. Characterization of the Ag43Cu37Zn20 alloy surface after potentiostatic polarization using LDI-TOF mass spectrometry. Corros Rev. 2017;35(6):473–81. https://doi.org/10.1515/corrrev-2017-0065.

    Article  CAS  Google Scholar 

  26. Katz AK, Glusker JP, Beebe SA, Bock CW. Calcium ion coordination: A comparison with that of beryllium, magnesium, and zinc. J Am Chem Soc. 1996;118:5752–63. https://doi.org/10.1021/ja953943i.

    Article  CAS  Google Scholar 

  27. Mercê ALR, Yano L, Khan M, Thanh XD, Bouet G. Complexing power of vitamin D3 toward various metals. Potentiometric studies of vitamin D3 complexes with Al3+, Cd2+, Gd3+, and Pb2+ ions in water-ethanol solution. J Solut Chem. 2003;32(12):1075–85. https://doi.org/10.1023/B:JOSL.0000023922.74448.52.

    Article  Google Scholar 

  28. Gadais JF, Khan MA, Bouet GM, Thanh XD. Spectroscopic evidence for cobalt(II) complexes with 25-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in aqueous solution. Trans Metal Chem. 1994;19:651–2. https://doi.org/10.1007/BF00980423.

    Article  CAS  Google Scholar 

  29. Angelova S, Nikolova V, Dude T. Divalent metal ions binding to lactose: a DFT computational study. Bulg Chem Commun. 2018;50:130–4.

    Google Scholar 

  30. Srivastava A, Tripathi R, Verma S, Srivastava N, Rawat AKS, Deepak D. A novel method for quantification of lactose in mammalian milk through HPTLC and determination by a mass spectrometric technique. Anal Methods. 2014;6:7268–76. https://doi.org/10.1039/C4AY00625A.

    Article  CAS  Google Scholar 

  31. Sagar BT, Sharma YP, Rawat SS, Nangude SL. Formulation development and evaluation of effervescent tablet of alendronate sodium with vitamin D3. J Drug Deliv Therap. 2013;3(5):65–74.

    Google Scholar 

  32. Mahmoodani F, Perera CO, Fedrizzi B, Abernethy G, Chen H. Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD UHPLC-MS/MS and chemical derivatization. Food Chem. 2017;219:373–81. https://doi.org/10.1016/j.foodchem.2016.09.146.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y. Fat-soluble vitamins in dietary supplements: optimization of extraction, simultaneous determination by HPLC and stability studies. A PhD dissertation presented to the Graduate School of Clemson University, All Dissertations, 2019.

  34. Tavcar-Kalcher G, Vengušt A. Stability of vitamins in premix. Anim Feed Sci Technol. 2007;132(1):148–54. https://doi.org/10.1016/j.anifeedsci.2006.03.001.

    Article  CAS  Google Scholar 

  35. Tsai S-Y, Lin H-Y, Hong W-P, Lin C-P. Evaluation of preliminary causes for vitamin D series degradation via DSC and HPLC analyses. J Therm Anal Calorim. 2017;130(3):1357–69. https://doi.org/10.1007/s10973-017-6209-4.

    Article  CAS  Google Scholar 

  36. Kumar MT, Jana S. Assessment of physical, thermal and spectral properties of consciousness energy treated cholecalciferol. J Adv Nanotechnol. 2021;1(3):56–73. https://doi.org/10.14302/issn.2689-2855.jan-21-3745.

    Article  Google Scholar 

  37. Pratiwi M, Ylitervo P, Pettersson A, Prakoso T, Soerawidjaja TH. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide. IOP Conf Ser Mater Sci Eng. 2017;206:012026. https://doi.org/10.1088/1757-899X/206/1/012026.

    Article  Google Scholar 

  38. Mejri W, Korchef A, Tlili M, Amor MB. Effects of temperature on precipitation kinetics and microstructure of calcium carbonate in the presence of magnesium and sulphate ions. Desal Water Treat. 2014;52:4863–70. https://doi.org/10.1080/19443994.2013.808813.

    Article  CAS  Google Scholar 

  39. Chen T, Neville A, Yuan M. Influence of Mg2+ on CaCO3 formation—bulk precipitation and surface deposition. Chem Eng Sci. 2006;61(16):5318–27. https://doi.org/10.1016/j.ces.2006.04.007.

    Article  CAS  Google Scholar 

  40. Karunadasa KSP, Manoratne CH, Pitawala HMTGA, Rajapakse RMG. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J Phys Chem Solids. 2019;134:21–8. https://doi.org/10.1016/j.jpcs.2019.05.023.

    Article  CAS  Google Scholar 

  41. Amer AA, Samir E-H. Hydration kinetics and fire resistance of recycled low grade alumino-silicate refractory bricks waste-metakaolin composite cement pastes. Egypt J Chem. 2017;60(3):421–33. https://doi.org/10.21608/EJCHEM.2017.3479.

    Article  Google Scholar 

  42. Zheng J, Huang J, Tao L, Li Z, Wang Q. A multifaceted kinetic model for the thermal decomposition of calcium carbonate. Crystals. 2020;10(9):849. https://doi.org/10.3390/cryst10090849.

    Article  CAS  Google Scholar 

  43. Curetti N, Pastero L, Bernasconi D, Cotellucci A, Corazzari I, Archetti M, Pavese A. Thermal stability of calcium oxalates from CO2 sequestration for storage purposes: an in-situ HT-XRPD and TGA combined study. Minerals. 2022;12:53. https://doi.org/10.3390/min12010053.

    Article  CAS  Google Scholar 

  44. Khan M, Sarwar A, Wahab M. Chemometric assessment of thermal oxidation of some edible oils. Effect of hot plate heating and microwave heating on physicochemical properties. J Therm Anal Calorim. 2010;102(1):369–74. https://doi.org/10.1007/s10973-010-0703-2.

    Article  CAS  Google Scholar 

  45. Igarashi J, Ikeda M, Sunagawa M. Kinetics of thermal [1,7a]-sigmatropic shift of hexafluoro vitamin D3 and vitamin D3 derivatives. Evaluation of conformations of the A ring affected by 1-OH and 3-OH groups. Bioorg Med Chem Lett. 1996;6(13):1431–6. https://doi.org/10.1016/S0960-894X(96)00245-4.

    Article  CAS  Google Scholar 

  46. Georgieva V, Vlaev L, Gyurova K. Non-isothermal degradation kinetics of CaCO3 from different origin. J Chem. 2013;2013:1–12. https://doi.org/10.1155/2013/872981.

    Article  CAS  Google Scholar 

  47. Du H, Courrégelongue C, Xto J, Böhlen A, Steinacher M, Borca CN, Huthwelker T, Amstad E. Additives: their influence on the humidity- and pressure-induced crystallization of amorphous CaCO3. Chem Mater. 2020;32:4282–91. https://doi.org/10.1021/acs.chemmater.0c00975.

    Article  CAS  Google Scholar 

  48. Morales-Gonzalez OM, Escribà-Gelonch M, Hessel V. Life cycle assessment of vitamin D3 synthesis: from batch to photo-high p. Int J Life Cycle Assess. 2019;24:2111–27. https://doi.org/10.1007/s11367-019-01634-6.

    Article  CAS  Google Scholar 

  49. Miller BE, Norman AW. Vitamin D handbook of vitamins. In: Machlin LJ, editor. Nutritional, biochemical, and clinical aspects. New York: Marcel Dekker Inc; 1984. p. 45–97.

    Google Scholar 

  50. Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism. Int J Mol Sci. 2020;21:6573. https://doi.org/10.3390/ijms21186573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahmoodani F, Perera CO, Abernethy G, Fedrizzi B, Greenwood D, Chen H. Identification of vitamin D3 oxidation products using high-resolution and tandem mass spectrometry. J Am Soc Mass Spectrom. 2018;29:1442–55. https://doi.org/10.1007/s13361-018-1926-x.

    Article  CAS  PubMed  Google Scholar 

  52. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21:319–29. https://doi.org/10.1002/9781118453926.ch29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nestola M, Thellmann A. Determination of vitamins D2 and D3 in selected food matrices by online high-performance liquid chromatography-gas chromatography-mass spectrometry (HPLC-GC-MS). Anal Bioanal Chem. 2015;407(1):297–308. https://doi.org/10.1007/s00216-014-8123-y.

    Article  CAS  PubMed  Google Scholar 

  54. Child P, Kuksis A. Critical role of ring structure in the differential uptake of cholesterol and plant sterols by membrane preparations in vitro. J Lipid Res. 1983;24(9):1196–209. https://doi.org/10.1016/S0022-2275(20)37903-7.

    Article  CAS  PubMed  Google Scholar 

  55. Plat J, Baumgartner S, Vanmierlo T, Lütjohann D, Calkins KL, Burrin DG, Guthrie G, Thijs C, Te Velde AA, Vreugdenhil ACE, Sverdlov R, Garssen J, Wouters K, Trautwein EA, Wolfs TG, van Gorp C, Mulder MT, Riksen NP, Groen AK, Mensink RP. Plant-based sterols and stanols in health & disease: “Consequences of human development in a plant-based environment?” Prog Lipid Res. 2019;74:87–102. https://doi.org/10.1016/j.plipres.2019.02.003.

    Article  CAS  PubMed  Google Scholar 

  56. Tian XQ, Chen TC, Matsuoka LY, Wortsman J, Holick MF. Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin. J Biol Chem. 1993;268(20):14888–92.

    Article  CAS  PubMed  Google Scholar 

  57. Meana-Pañeda R, Fernández-Ramos A. Tunneling and conformational flexibility play critical roles in the isomerization mechanism of vitamin D. J Am Chem Soc. 2012;134(1):346–54. https://doi.org/10.1021/ja2077075.

    Article  CAS  PubMed  Google Scholar 

  58. Zou Z, Wouter JEM, Matveeva G, Jensen ACS, Bertinetti L, Hood MA, Sun C, Gilbert PUPA, Polishchuk I, Pokroy B, Mahamid J, Politi Y, Weiner S, Werner P, Bette S, Dinnebier R, Kolb U, Zolotoyabko E, Fratzl P. A hydrated crystalline calcium carbonate phase: calcium carbonate hemihydrate. Science. 2019;363(6425):396–400. https://doi.org/10.1126/science.aav0210.

    Article  CAS  PubMed  Google Scholar 

  59. Rodriguez-Navarro C, Ruiz-Agudo E, Luque A, Rodriguez-Navarro AB, Ortega-Huertas M. Thermal decomposition of calcite: mechanisms of formation and textural evolution of CaO nanocrystals. Am Mineral. 2009;94:578–93. https://doi.org/10.2138/am.2009.3021.

    Article  CAS  Google Scholar 

  60. Ihli J, Kim Y-Y, Noel EH, Meldrum FC. The effect of additives on amorphous calcium carbonate (ACC): Janus behavior in solution and the solid state. Adv Funct Mater. 2013;23(12):1575–85. https://doi.org/10.1002/adfm.201201805.

    Article  CAS  Google Scholar 

  61. Xu X-R, Cai A-H, Liu R, Pan H-H, Tang R-K, Cho K. The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate. J Cryst Growth. 2008;310(16):3779–87. https://doi.org/10.1016/j.jcrysgro.2008.05.034.

    Article  CAS  Google Scholar 

  62. Cantaert B, Verch A, Kim Y-Y, Ludwig H, Paunov VN, Kröger R, Meldrum FC. Formation and structure of calcium carbonate thin films and nanofibers precipitated in the presence of poly (allylamine hydrochloride) and magnesium ions. Chem Mater. 2013;25:4994–5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tone T, Koga N. Thermally induced aragonite-calcite transformation in freshwater pearl: A mutual relation with the thermal dehydration of included water. ACS Omega. 2021;6:13904–14. https://doi.org/10.1021/acsomega.1c01683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Authors would like to acknowledge financial support of Ministry of Education, Science and Technological Development of the Republic of Serbia, under Contract numbers 451–03-9/2022–14/200105 (N. Manić) and 451–03-68/2022–14/200017 (B. Janković). Authors express special gratitude to dr Snežana Popović from Faculty of Sciences (University of Novi Sad, Serbia) for the help in TA measurements and useful instructions. Also, authors would like to thank the regular member of the Serbian Academy of Sciences and Arts (SANU), dr Slavko Mentus, for useful suggestions and comments regarding this paper.

Author information

Authors and Affiliations

Authors

Contributions

DJ was contributed to conceptualization, validation, investigation, resources, writing—review and editing, supervision. MĐ was contributed to validation, investigation, resources, visualization, supervision. AM was contributed to validation, investigation, visualization, supervision. NM was contributed to validation, investigation, visualization, supervision. SV was contributed to validation, investigation, visualization, resources, writing—review and editing, supervision. FV was contributed to validation, investigation, visualization, resources, supervision. BJ was contributed to conceptualization, methodology, software, validation, formal analysis, resources, data curation, writing—original draft, writing—review and editing, visualization, supervision, project administration.

Corresponding author

Correspondence to Bojan Janković.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human or animal rights

This research does not involve Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1004 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelić, D., Đermanović, M., Marković, A. et al. Novel insight in thermo-oxidative kinetics of vitamin D-based supplement formulation using TG–DTG–DTA, ATR-FTIR and MALDI-MS techniques. J Therm Anal Calorim 148, 4281–4305 (2023). https://doi.org/10.1007/s10973-023-12017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12017-3

Keywords

Navigation