Skip to main content
Log in

Structure–properties correlations in compatibilized polyamide/thermoplastic elastomer/nanoclay mixtures: interrelationship among non-isothermal crystallization kinetics, morphology and viscoelastic responses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the influences of styrene–butadiene–styrene block copolymer (SBS), a thermoplastic elastomer, nanoclay (NC) and maleic anhydride grafted styrene–ethylene/butylene–styrene (m-SEBS), a compatibilizer, on the non-isothermal crystallization kinetics of polyamide 12 (PA12) have been evaluated using different theoretical models including Avrami, Jeziorny, Ozawa and Mo as well as Kissinger, Takhor and Augis and Bennett equations. Using microscopic observations, X-ray diffraction patterns and rheological responses, the interrelations among the crystallization kinetics variables, morphology and molecular dynamics of compatibilized PA12/SBS rubber/NC mixtures have been thoroughly investigated. A study on different kinetics variables such as crystallization half-time, Avrami index and F(T) demonstrates that the PA crystallization rate has an upward trend against the compatibilizer level within the studied compatibilizer content, while the rate shows a maximum value against NC loading and SBS content. The calculation of the rubber particles diameter, the distance between the rubber particles, PA/SBS interfacial area and normalized chain relaxation time clarifies that more heterogeneous nucleation sites are provided for PA chains by NC platelets and SBS particle surfaces at higher contents (higher amounts in the ranges of 15–21 mass% for SBS and 3–7 mass% for NC), though the molecular movements are restricted more as well, which reduces the growth rate of PA crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mark HF, Kroschwitz JI. Encyclopedia of polymer science and technology. vol 1, Wiley; 2003.

  2. Gupta B, Lacrampe M-F, Krawczak P. Polyamide-6/clay nanocomposites: a critical review. Polym Polym Compos. 2006;14:13–38.

    CAS  Google Scholar 

  3. Kotal M, Bhowmick AK. Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci. 2015;51:127–87.

    Article  CAS  Google Scholar 

  4. Pavlidou S, Papaspyrides C. A review on polymer–layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.

    Article  CAS  Google Scholar 

  5. Ma J, Xu J, Ren J-H, Yu Z-Z, Mai Y-W. A new approach to polymer/montmorillonite nanocomposites. Polymer. 2003;44:4619–24.

    Article  CAS  Google Scholar 

  6. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep. 2000;28:1–63.

    Article  Google Scholar 

  7. Kelnar I, Kotek J, Kapralkova L, Munteanu B. Polyamide nanocomposites with improved toughness. J Appl Polym Sci. 2005;96:288–93.

    Article  CAS  Google Scholar 

  8. Opelt CV, Coelho LA. Reinforcement and toughening mechanisms in polymer nanocomposites–reinforcement effectiveness and nanoclay nanocomposites. Mater Chem Phys. 2016;169:179–85.

    Article  CAS  Google Scholar 

  9. Naeim Abadi A, Garmabi H, Hemmati F. Toughening of polyamide 12/nanoclay nanocomposites by incompatible styrene-butadiene-styrene rubber through tailoring interfacial adhesion and fracture mechanism. Adv Polym Technol. 2018;37:2303–13.

    Article  CAS  Google Scholar 

  10. Das S, Samal SK, Mohanty S, Nayak SK. Crystallization of polymer blend nanocomposites. In:Crystallization in multiphase polymer systems. Elsevier; 2018. p. 313–39.

  11. Wang D, Li Y, Xie X-M, Guo B-H. Compatibilization and morphology development of immiscible ternary polymer blends. Polymer. 2011;52:191–200.

    Article  CAS  Google Scholar 

  12. Boudenne A, Ibos L, Candau Y, Thomas S. Handbook of multiphase polymer systems. Wiley; 2011.

  13. Jose S, Thomas S, Lievana E, Karger-Kocsis J. Morphology and mechanical properties of polyamide 12 blends with styrene/ethylene–butylene/styrene rubbers with and without maleation. J Appl Polym Sci. 2005;95:1376–87.

    Article  CAS  Google Scholar 

  14. Naeim Abadi A, Hemmati F, Garmabi H. Validation of rheological responses for morphological evaluation of incompatible polyamide 12/thermoplastic elastomer blends filled with nanoclay. Polym Testing. 2018;65:78–89.

    Article  CAS  Google Scholar 

  15. Ahn Y-C, Paul DR. Rubber toughening of nylon 6 nanocomposites. Polymer. 2006;47:2830–8.

    Article  CAS  Google Scholar 

  16. Zhou C, Teng Y, Zhou L, Sun S, Yang H. Morphology and mechanical properties of PA6/organoclay nanocomposites toughened by bulk rubber and core-shell rubber. Plast Rubber Compos. 2015;44:339–44.

    Article  CAS  Google Scholar 

  17. Jahromi AE, Jahromi HRE, Hemmati F, Saeb MR, Goodarzi V, Formela K. Morphology and mechanical properties of polyamide/clay nanocomposites toughened with NBR/NBR-g-GMA: a comparative study. Compos B Eng. 2016;90:478–84.

    Article  Google Scholar 

  18. Jahromi AE, Arefazar A, Jazani OM, Sari MG, Saeb MR, Salehi M. Taguchi-based analysis of polyamide 6/acrylonitrile–butadiene rubber/nanoclay nanocomposites: the role of processing variables. J Appl Polym Sci. 2013;130:820–8.

    Article  CAS  Google Scholar 

  19. Yuan Q, Awate S, Misra R. Nonisothermal crystallization behavior of polypropylene–clay nanocomposites. Eur Polymer J. 2006;42:1994–2003.

    Article  CAS  Google Scholar 

  20. de Melo CCN, Beatrice CAG, Pessan LA, de Oliveira AD, Machado FM. Analysis of nonisothermal crystallization kinetics of graphene oxide-reinforced polyamide 6 nanocomposites. Thermochim Acta. 2018;667:111–21.

    Article  Google Scholar 

  21. Ou B, Chen M, Zhou H. Nonisothermal crystallization and melting behaviors of PP/PA6/TiO2 nanocomposites. Polym-Plast Technol Eng. 2017;56:506–25.

    Article  CAS  Google Scholar 

  22. Gomari S, Ghasemi I, Karrabi M, Azizi H. An investigation on non-isothermal crystallization behavior and morphology of polyamide 6/poly (ethylene-co-1-butene)-graft-maleic anhydride/organoclay nanocomposites. Polyolefins Journal. 2015;2:99–108.

    Google Scholar 

  23. Maiti S. Nonisothermal crystallization kinetics of PA6 and PA6/SEBS-g-MA blends. J Polym Res. 2012;19:9926.

    Article  Google Scholar 

  24. Jape SP, Deshpande VD. Nonisothermal crystallization kinetics of nylon 66/LCP blends. Thermochim Acta. 2017;655:1–12.

    Article  CAS  Google Scholar 

  25. Liu X, Wu Q. Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites. Eur Polymer J. 2002;38:1383–9.

    Article  CAS  Google Scholar 

  26. Fornes T, Paul DR. Crystallization behavior of nylon 6 nanocomposites. Polymer. 2003;44:3945–61.

    Article  CAS  Google Scholar 

  27. Tjong S, Bao S. Preparation and nonisothermal crystallization behavior of polyamide 6/montmorillonite nanocomposites. J Polym Sci Part B: Polym Phys. 2004;42:2878–91.

    Article  CAS  Google Scholar 

  28. Chiu F-C, Lai S-M, Chen Y-L, Lee T-H. Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener. Polymer. 2005;46:11600–9.

    Article  CAS  Google Scholar 

  29. Jariyavidyanont K, Focke W, Androsch R. Crystallization kinetics of polyamide 11 in the presence of sepiolite and montmorillonite nanofillers. Colloid Polym Sci. 2016;294:1143–51.

    Article  CAS  Google Scholar 

  30. Kermaniyan TS, Garmabi H, Saeb MR. Calorimetric and rheokinetic analyses merged to capture crystallization kinetics in polyamide/clay nanocomposites: revisiting predictability of models. J Appl Polym Sci. 2018;135:46364.

    Article  Google Scholar 

  31. Benobeidallah B, Benhamida A, Dorigato A, Sola A, Messori M, Pegoretti A. Structure and properties of polyamide 11 nanocomposites filled with fibrous palygorskite clay. J Renew Mater. 2019;7:89–102.

    Article  Google Scholar 

  32. Balamurugan GP, Maiti S. Nonisothermal crystallization kinetics of polyamide 6 and ethylene-co-butyl acrylate blends. J Appl Polym Sci. 2008;107:2414–35.

    Article  CAS  Google Scholar 

  33. Rinawa K, Maiti S, Sonnier R, Cuesta JL. Non-isothermal crystallization kinetics and thermal behaviour of PA12/SEBS-g-MA blends. Bull Mater Sci. 2015;38:1315–27.

    Article  CAS  Google Scholar 

  34. Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. J Therm Anal Calorim. 2015;121:1321–32.

    Article  CAS  Google Scholar 

  35. Tang Y, Hu Y, Zhang R, Gui Z, Wang Z, Chen Z, et al. Investigation on polypropylene and polyamide-6 alloys/montmorillonite nanocomposites. Polymer. 2004;45:5317–26.

    Article  CAS  Google Scholar 

  36. Lai S-M, Li H-C, Liao Y-C. Properties and preparation of compatibilized nylon 6 nanocomposites/ABS blends: part II–Physical and thermal properties. Eur Polymer J. 2007;43:1660–71.

    Article  CAS  Google Scholar 

  37. Augustine J, Maiti S, Gupta A. Mechanical properties and crystallization behavior of toughened polyamide-6/carbon nanotube composites. J Appl Polym Sci. 2012;125:E478–85.

    Article  CAS  Google Scholar 

  38. de Carcer ÍA, Masegosa RM, Viñas MT, Sanchez-Cabezudo M, Salom C, Prolongo MG, et al. Storage stability of SBS/sulfur modified bitumens at high temperature: influence of bitumen composition and structure. Constr Build Mater. 2014;52:245–52.

    Article  Google Scholar 

  39. Lai S-M, Chen W-C, Chen C-M. Preparation, structure, and properties of styrene-ethylene-butylene-styrene block copolymer/clay nanocomposites: part II fracture behaviors. Eur Polymer J. 2008;44:3535–47.

    Article  CAS  Google Scholar 

  40. Jensen WA. Response surface methodology: process and product optimization using designed experiments. J Qual Technol. 2017;49:186.

    Article  Google Scholar 

  41. Shi J, Yang X, Wang X, Lu L. Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites. Polym Testing. 2010;29:596–602.

    Article  CAS  Google Scholar 

  42. Hay JN. Crystallisation kinetics and melting studies. Br Polym J. 1979;11:137–45.

    Article  CAS  Google Scholar 

  43. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  44. Christian JW. The theory of transformations in metals and alloys. Newnes; 2002.

  45. Wunderlich B, Mehta A. Macromolecular nucleation. J Polym Sci Polym Phys Ed. 1974;12:255–63.

    Article  CAS  Google Scholar 

  46. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  47. Guo B, Zou Q, Lei Y, Du M, Liu M, Jia D. Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta. 2009;484:48–56.

    Article  CAS  Google Scholar 

  48. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  49. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  50. Vyazovkin S. On the phenomenon of variable activation energy for condensed phase reactions. New J Chem. 2000;24:913–7.

    Article  CAS  Google Scholar 

  51. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  52. Takhor R. Advances in nucleation and crystallization of glasses. Columbus: American Ceramics Society; 1971. p. 166.

    Google Scholar 

  53. Augis J, Bennett J. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.

    Article  CAS  Google Scholar 

  54. Fornes T, Paul DR. Structure and properties of nanocomposites based on nylon-11 and-12 compared with those based on nylon-6. Macromolecules. 2004;37:7698–709.

    Article  CAS  Google Scholar 

  55. Zhao F, Bao X, McLauchlin AR, Gu J, Wan C, Kandasubramanian B. Effect of POSS on morphology and mechanical properties of polyamide 12/montmorillonite nanocomposites. Appl Clay Sci. 2010;47:249–56.

    Article  CAS  Google Scholar 

  56. Wu S. Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer. 1985;26:1855–63.

    Article  CAS  Google Scholar 

  57. Bae W-S, Kwon OJ, Kim BC, Chae DW. Effects of multi-walled carbon nanotubes on rheological and physical properties of polyamide-based thermoplastic elastomers. Korea-Aust Rheol J. 2012;24:221–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farkhondeh Hemmati or Jamshid Mohammadi-Roshandeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 560 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Abadi, A.N., Hemmati, F. et al. Structure–properties correlations in compatibilized polyamide/thermoplastic elastomer/nanoclay mixtures: interrelationship among non-isothermal crystallization kinetics, morphology and viscoelastic responses. J Therm Anal Calorim 148, 3373–3394 (2023). https://doi.org/10.1007/s10973-023-12001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12001-x

Keywords

Navigation