Skip to main content
Log in

Techno-economic evaluation and multi-criteria optimization of a trigeneration flash–binary geothermal power plant integrated with parabolic trough solar collectors

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study presents a hybrid solar–geothermal power plant to produce power, heating and cooling. The proposed integrated power plant is composed of a flash–binary geothermal cycle, parabolic trough solar collectors, auxiliary heater, single effect LiBr–water absorption chiller and heat exchangers. The plant produces constant electrical power as well as heating and cooling required for a yeast production factory. The energetic and exergetic efficiencies of the solar–geothermal power plant for the proposed system under the steady-state condition with constant irradiance are evaluated at 10.78% and 23.1%, respectively. It also found that most of the exergy destruction in the power plant occurs inside solar collectors and auxiliary heaters. It was calculated that heat exchanger three and an absorption chiller would produce 1.97 MW of power, 4.03 MW of heat and 563.2 kW of cooling. Moreover, the variation of evaluation parameters based on the changes in solar beam irradiance is investigated. It found that increasing beam irradiance will result in increasing total exergy efficiency and reducing \(\dot{C}_{{{\text{tot}}}}\), in constant heat input to the cycle. The share of the auxiliary heater in the plant’s energy-providing and the fuel’s mass flow rate would be decreased by increasing the solar beam irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Cond:

Condenser

CCHP:

Combined cooling, heat and power

COP:

Coefficient of performance

EUF:

Energy utilization factor

Exh:

Exhaust

LHV:

Lower heating value

HRSG:

Heat recovery steam generator

ORC:

Organic Rankine cycle

PVT:

Photovoltaic–thermal

A:

Area (m2)

abs:

Absorber

bt:

Binary turbine

Cp:

Specific heat

D :

Diameter (m)

D O :

Collector tube outlet diameter (m)

e.v:

Expansion valve

e :

Specific exergy (kJ kg−1), evaporator

\(\dot{E}\) :

Exergy rate (kJ)

\(\dot{E}_{{\text{D}}}\) :

Exergy destruction rate (kW)

h :

Specific enthalpy (kJ kg−1)

I b :

Beam irradiance (W m−2)

K :

Component

m :

Mass flow rate (kg s−1)

M :

Molecular mass \(\left( {{\text{kg}} \, {\text{kmol}}}^{-1} \right)\)

n :

Number of solar collectors, day number

P :

Pressure (bar), pump

Q :

Heat transfer (kJ)

\(\dot{Q}\) :

Heat transfer rate (kW)

\(\dot{Q}_{{\text{u}}}\) :

Useful heat gain (kW)

S :

Absorbed heat (kJ)

s :

Specific entropy (kJ kg−1 K−1)

T :

Temperature/turbine (K)

\(T_{{\text{r}}}\) :

Wall temperature (K)

t :

Day time

U :

Overall heat transfer coefficient (kW m−2 K−1)

\(w_{{\text{a}}}\) :

Aperture width (m)

W :

Work (kJ)

\(\dot{W}\) :

Power (kW)

Y d :

Exergy destruction ratio (%)

η :

Efficiency

ε :

Exergetic efficiency

δ :

Difference

F :

Fuel

P :

Product

D :

Destruction

L :

Loss

PP:

Pinch point

Aux:

Auxiliary heater

i :

Inlet

e :

Exit

s :

Isentropic

f :

Saturated liquid

ref:

Reference

CV:

Control volume

sat:

Saturated

ORC:

Organic Rankine cycle

Evap:

Evaporator

St:

Steam turbine

HE:

Heat exchanger

Cond:

Condenser

P :

Pump

gen:

Generator

t :

Time

e.v:

Expansion valve

abs:

Absorber

\({\text{H}}_{2} {\text{O}}\) :

Water

BT:

Binary turbine

Fuel:

Fuel

w :

Power

q :

Heat

0:

Atmospheric condition

ch:

Chemical

ph:

Physical

total:

Total

th:

Thermomechanical

CI:

Investment cost

0:

Atmospheric condition

OMC:

Operation and maintenance cost

PT:

Potential

KN:

Kinetic

References

  1. Dinçer I, Rosen M, Ahmadi P. Optimization of energy systems. London: John Wiley & Sons; 2017.

    Book  Google Scholar 

  2. Kolahi MR, Nemati A, Yari M. Performance optimization and improvement of a flash-binary geothermal power plant using zeotropic mixtures with PSO algorithm. Geothermics. 2018;74:45–56.

    Article  Google Scholar 

  3. Ahmadi MH, Sayyaadi H, Mohammadi AH, Barranco-Jimenez MA. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Convers Manag. 2013;73:370–80.

    Article  Google Scholar 

  4. DiPippo R. Second Law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics. 2004;33:565–86.

    Article  CAS  Google Scholar 

  5. Zare V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Convers Manag. 2015;105:127–38.

    Article  Google Scholar 

  6. Zhao Y, Wang J. Exergoeconomic analysis and optimization of a flash-binary geothermal power system. Appl Energy. 2016;179:159–70.

    Article  Google Scholar 

  7. Zeyghami M, Khalili F. Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling. Energy Convers Manag [Internet]. 2015 [cited 2015 Dec 7];106:10–20. Available from: http://www.sciencedirect.com/science/article/pii/S0196890415008511.

  8. Olabi AG, Wilberforce T, Ramadan M, Ali M, Hai A. Compressed air energy storage systems : components and operating parameters–a review. J Energy Storage. 2020;34:102000.

    Article  Google Scholar 

  9. Ren F, Wei Z, Zhai X. Multi-objective optimization and evaluation of hybrid CCHP systems for different building types. Energy. 2021;215:119096.

    Article  Google Scholar 

  10. Xu X, Niu D, Xiao B, Guo X, Zhang L, Wang K. Policy analysis for grid parity of wind power generation in China. Energy Policy. 2020;138:111225.

    Article  Google Scholar 

  11. Xiao Y, Zhang Y, Kaku I, Kang R, Pan X. Electric vehicle routing problem: a systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renew Sustain Energy Rev. 2021;151:111567.

    Article  Google Scholar 

  12. Miao Z, Meng X, Liu L. Analyzing and optimizing the power generation performance of thermoelectric generators based on an industrial environment. J Power Sources. 2022;541:231699.

    Article  CAS  Google Scholar 

  13. Scardigno D, Fanelli E, Viggiano A, Braccio G, Magi V. A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources. Energy. 2015;91:807–15.

    Article  CAS  Google Scholar 

  14. Zhao P, Wang J, Gao L, Dai Y. Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell. Int J Hydrogen Energy [Internet]. Pergamon; 2012 [cited 2020 Jan 21];37:3382–91. Available from: https://www.sciencedirect.com/science/article/pii/S0360319911025791.

  15. Boyaghchi FA, Chavoshi M. Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts. Appl Therm Eng. 2017;112:660–75.

    Article  CAS  Google Scholar 

  16. Bicer Y, Dincer I. Analysis and performance evaluation of a renewable energy based multigeneration system. Energy. 2016;94:623–32.

    Article  Google Scholar 

  17. Ayub M, Mitsos A, Ghasemi H. Thermo-economic analysis of a hybrid solar-binary geothermal power plant. Energy. 2015;87:326–35.

    Article  Google Scholar 

  18. Al-Ali M, Dincer I. Energetic and exergetic studies of a multigenerational solar–geothermal system. Appl Therm Eng. 2014;71:16–23.

    Article  Google Scholar 

  19. Calise F, Cappiello FL, d’Accadia MD, Vicidomini M. Energy and economic analysis of a small hybrid solar-geothermal trigeneration system: a dynamic approach. Energy. 2020;208:118295.

    Article  CAS  Google Scholar 

  20. Ghasemi H, Sheu E, Tizzanini A, Paci M, Mitsos A. Hybrid solar–geothermal power generation: optimal retrofitting. Appl Energy. 2014;131:158–70.

    Article  Google Scholar 

  21. Maali R, Khir T. Performance analysis of different orc power plant configurations using solar and geothermal heat sources. Int J Green Energy. 2020;17:349–62.

    Article  Google Scholar 

  22. Calise F, d’Accadia MD, Macaluso A, Piacentino A, Vanoli L. Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water. Energy Convers Manag. 2016;115:200–20.

    Article  Google Scholar 

  23. Siddiqui O, Ishaq H, Dincer I. A novel solar and geothermal-based trigeneration system for electricity generation, hydrogen production and cooling. Energy Convers Manag. 2019;198:111812.

    Article  CAS  Google Scholar 

  24. Fan S, Wang X, Cao S, Wang Y, Zhang Y, Liu B. A novel model to determine the relationship between dust concentration and energy conversion efficiency of photovoltaic (PV) panels. Energy. 2022;252:123927.

    Article  Google Scholar 

  25. Ahmadi MH, Baghban A, Sadeghzadeh M, Zamen M, Mosavi A, Shamshirband S, et al. Evaluation of electrical efficiency of photovoltaic thermal solar collector. http://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&page=instructions. Taylor & Francis; 2020;14:545–65.

  26. Hossini N. Evaluation of solar radiation for the use of photovoltaic panels in Afghanistan. Int J Innov Res Sci Stud. 2021;4:139–46.

    Google Scholar 

  27. El Haj AM, Ahmadi MH, Sadeghzadeh M, Yassin A, Issakhov A. Renewable hybrid energy systems using geothermal energy: hybrid solar thermal–geothermal power plant. Int J Low-Carbon Technol Oxford Acad. 2021;16:518–30.

    Article  Google Scholar 

  28. Ghodbane M, Said Z, Ketfi O, Boumeddane B, Hoang AT, Sheikholeslami M, et al. Thermal performance assessment of an ejector air-conditioning system with parabolic trough collector using R718 as a refrigerant: a case study in Algerian desert region. Sustain Energy Technol Assess. 2022;53:102513.

    Google Scholar 

  29. Alayi R, Kumar R, Seydnouri SR, Ahmadi MH, Issakhov A. Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system. Int J Low-Carbon Technol Oxford Acad. 2021;16:570–6.

    Article  CAS  Google Scholar 

  30. Naseri A, Fazlikhani M, Sadeghzadeh M, Naeimi A, Bidi M, Tabatabaei SH. Thermodynamic and exergy analyses of a novel solar-powered CO2 transcritical power cycle with recovery of cryogenic LNG using stirling engines. Renew Energy Res Appl. 2020;1:175–85.

    Google Scholar 

  31. Sultan SM, Tso CP, EE MN. A case study on effect of inclination angle on performance of photovoltaic solar thermal collector in forced fluid mode. Renew Energy Res Appl. 2020;1:187–96.

    Google Scholar 

  32. Meng Y, Wu H, Zheng Y, Wang K, Duan Y. Comparative analysis and multi-objective optimization of hydrogen liquefaction process using either organic Rankine or absorption power cycles driven by dual-source biomass fuel and geothermal energy. Energy. 2022;253:124078.

    Article  CAS  Google Scholar 

  33. Gholamian E, Ahmadi P, Hanafizadeh P, Mazzarella L. Energy equipment and systems the use of waste heat recovery (WHR) options to produce electricity, heating, cooling, and freshwater for residential buildings. Energy Equip Syst. 2020;8:277–96.

    Google Scholar 

  34. Mojtaba S, Bashiri S, Reza A, Ahmadi P. A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage (CAES ) hybridized with solar and desalination units. Energy Convers Manag. 2021;236:114053.

    Article  Google Scholar 

  35. Balta MT, Dincer I, Hepbasli A. Comparative assessment of various chlorine family thermochemical cycles for hydrogen production. Int J Hyd Energy [Internet]. 2016;41:7802–13. https://doi.org/10.1016/j.ijhydene.2015.12.222.

    Article  CAS  Google Scholar 

  36. Bejan A, Tsatsaronis G. Thermal design and optimization. London: John Wiley & Sons; 1996.

    Google Scholar 

  37. Ahmadi P, Rosen MA, Dincer I. Greenhouse gas emission and exergo-environmental analyses of a trigeneration energy system. Int J Greenh Gas Control. 2011;5:1540–9.

    Article  CAS  Google Scholar 

  38. Arabkoohsar A, Behzadi A, Nord N. A highly innovative yet cost-effective multi-generation energy system for net-zero energy buildings. Energy Convers Manag. 2021;237:114120.

    Article  Google Scholar 

  39. Bejan A, Moran MJ. Thermal design and optimization. London: John Wiley & Sons; 1996.

    Google Scholar 

  40. Zare V. Performance improvement of biomass-fueled closed cycle gas turbine via compressor inlet cooling using absorption refrigeration; thermoeconomic analysis and multi-objective optimization. Energy Convers Manag. 2020;215:112946.

    Article  Google Scholar 

  41. Ehyaei MA, Ahmadi A, El Haj AM, Salameh T. Optimization of parabolic through collector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and economic analyses. J Clean Prod. 2019;234:285–96.

    Article  Google Scholar 

  42. Yari M. Exergetic analysis of various types of geothermal power plants. Renew Energy [Internet]. 2010 [cited 2015 Aug 7];35:112–21. Available from: http://www.sciencedirect.com/science/article/pii/S0960148109003371.

  43. Yari M, Mehr AS, Zare V, Mahmoudi SMS, Rosen MA. Exergoeconomic comparison of TLC ( trilateral Rankine cycle ), ORC ( organic Rankine cycle ) and Kalina cycle using a low grade heat source. Energy. 2015;83:712–22.

    Article  Google Scholar 

  44. Gomri R. Investigation of the potential of application of single effect and multiple effect absorption cooling systems. Energy Convers Manag [Internet]. 2010 [cited 2016 Mar 2];51:1629–36. Available from: http://www.sciencedirect.com/science/article/pii/S0196890410000221.

  45. Habibollahzade A, Gholamian E, Ahmadi P, Behzadi A. Multi-criteria optimization of an integrated energy system with thermoelectric generator, parabolic trough solar collector and electrolysis for hydrogen production. Int J Hydrogen Energy [Internet]. Pergamon; 2018 [cited 2020 Feb 17];43:14140–57. Available from: https://www.sciencedirect.com/science/article/pii/S0360319918317245.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sharifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, A., Eskandari, A. Techno-economic evaluation and multi-criteria optimization of a trigeneration flash–binary geothermal power plant integrated with parabolic trough solar collectors. J Therm Anal Calorim 148, 8263–8282 (2023). https://doi.org/10.1007/s10973-023-11968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11968-x

Keywords

Navigation