Skip to main content
Log in

Heat transfer characteristics of automatic transmission nanofluid with twisted tape: an experimental study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Automatic transmission fluid (ATF) is a versatile fluid used in automobiles for cooling, torque converter application, and lubrication purposes. In this paper, the effects of simultaneous utilization of titanium dioxide nanoparticles and twisted tapes on heat transfer as well as pressure drop characteristics of ATF flow have been investigated experimentally. Thermophysical properties of nanofluids were measured experimentally. Moreover, different parameters effects such as nanoparticle mass concentration (0.5%, 1%, and 2%), twist ratio of tapes (10, 20), and the Reynolds number (70–640) on pressure drop and heat transfer were investigated. According to the results, an increment in nanoparticle mass concentration and the Reynolds number led to an increase in pressure drop and heat transfer. Further, both the pressure drop and heat transfer increased by decreasing the twist ratio of the tapes. The maximum increase in convective heat transfer occurred by 127% at the Re number of 262 for the nanofluid with 2% mass fraction and twisted tape 2 (with a twist ratio of 10) compared to the base fluid and plain tube. Considering both the heat transfer and pressure drop by calculation of mean energy ratio at all Reynolds numbers, the nanofluid with 1% of mass fraction along with twisted tape 2 (with mean energy ratio of 1.252) showed the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c p :

Specific heat at const. press. (J kg−1 K−1)

c v :

Specific heat at const. vol. (J kg−1 K−1)

D :

Tube diameter (m)

d :

Nanoparticle diameter (m)

ER:

Energy ratio

f :

Friction factor

g :

Gravitational acceleration (m s−2)

h :

Convective heat transfer (W m−2 K−1)

H :

Tape twist pitch (m)

k :

Thermal conductivity (W m−1 K−1)

L :

Length of the tube (m)

\(\dot{{\varvec{m}}}\) :

Mass flow rate (kg s−1)

Nu:

Nusselt number

Pr:

Prandtl number

P :

Pressure (Pa)

r :

The radius of tube (m)

Re:

Reynolds number

T :

Temperature (K)

Gz:

Graetz number

\({u}_{\mathrm{m}}\) :

Average velocity (m s−1)

x :

Axial distance (m)

w :

Nanoparticle mass concentration

κ :

Boltzmann constant

μ :

Dynamic viscosity (kg m-1s-1)

ρ :

Density (kg m-3)

φ :

Nanoparticle volumetric concentration

av:

Average

b:

Bulk

bf:

Base fluid

eff:

Effective

exp:

Experimental

i:

Inlet

l:

Liquid

nf:

Nanofluid

o:

Outlet

p:

Particle

pe:

Particle equivalent

pt:

Plain tube

tw:

Twisted tape

w:

Wall

References

  1. Alidoust S, AmoozadKhalili F, Hamedi S. Investigation of effective parameters on relative thermal conductivity of SWCNT (15%)-Fe3O4 (85%)/water hybrid ferro-nanofluid and presenting a new correlation with response surface methodology. Coll Surf A Physicochem Eng Asp. 2022;645: 128625.

    Article  CAS  Google Scholar 

  2. Esfe MH, Kamyab MH, Valadkhani M. Application of nanofluids and fluids in photovoltaic thermal system: an updated review. Sol Energy. 2020;199:796–818.

    Article  Google Scholar 

  3. Esfe MH, Rostamian H, Toghraie D, Hekmatifar M, Abad ATK. Numerical study of heat transfer of U-shaped enclosure containing nanofluids in a porous medium using two-phase mixture method. Case Stud Therm Eng. 2022;38: 102150.

    Article  Google Scholar 

  4. Awais M, Ullah N, Ahmad J, Sikandar F, Ehsan MM, Salehin S, Bhuiyan AA. Heat transfer and pressure drop performance of nanofluid: a state-of-the-art review. Int J Thermofluids. 2021;9:100065.

    Article  CAS  Google Scholar 

  5. Abbasian Arani AA, Aberoumand H, Jafarimoghaddam A, Aberoumand S. Mixed convection heat transfer: an experimental study on Cu/heat transfer oil nanofluids inside annular tube. Heat and Mass Transf. 2017;53(9):2875–84.

    Article  CAS  Google Scholar 

  6. Hekmatipour F, Akhavan-Behabadi M, Sajadi B, Fakoor-Pakdaman M. Mixed convection heat transfer and pressure drop characteristics of the copper oxide-heat transfer oil (CuO-HTO) nanofluid in vertical tube. Case Stud Therm Eng. 2017;10:532–40.

    Article  Google Scholar 

  7. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86.

    Article  CAS  Google Scholar 

  8. Hussain A, Arshad M, Hassan A, Rehman A, Ahmad H, Baili J, Gia TN. Heat transport investigation of engine oil based rotating nanomaterial liquid flow in the existence of partial slip effect. Case Stud Therm Eng. 2021;28: 101500.

    Article  Google Scholar 

  9. Arif M, Kumam P, Khan D, Watthayu W. Thermal performance of GO-MoS2/engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder. Case Stud Therm Eng. 2021;27: 101290.

    Article  Google Scholar 

  10. Gil-Font J, Navarrete N, Cervantes E, Mondragón R, Torro SF, Martínez-Cuenca R, Hernández L. Convective heat transfer performance of thermal oil-based nanofluids in a high-temperature thermohydraulic loop. Int J Therm. 2022;171: 107243.

    Article  CAS  Google Scholar 

  11. Qasemian A, Moradi F, Karamati A, Keshavarz A, Shakeri A. Hydraulic and thermal analysis of automatic transmission fluid in the presence of nanoparticles and twisted tape: an experimental and numerical study. J Cent South Univ. 2021;28(11):3404–17.

    Article  CAS  Google Scholar 

  12. Siddique I, Sadiq K, Jaradat MM, Ali R, Jarad F,Engine oil based MoS2 Casson nanofluid flow with ramped boundary conditions and thermal radiation through a channel. Case Stud Therm Eng.2022. p. 102118.

  13. Arif M, Kumam P, Kumam W, Mostafa Z. Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: a fractional model. Case Stud Therm Eng. 2022;31: 101837.

    Article  Google Scholar 

  14. Wiriyasart S, Hommalee C, Sirikasemsuk S, Prurapark R, Naphon P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Stud Therm Eng. 2020;18: 100583.

    Article  Google Scholar 

  15. Hasanpour A, Farhadi M, Sedighi K. A review study on twisted tape inserts on turbulent flow heat exchangers: the overall enhancement ratio criteria. ICHMT. 2014;55:53–62.

    CAS  Google Scholar 

  16. Bahiraei M, Mazaheri N, Aliee F. Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts. Powder Technol. 2019;345:692–703.

    Article  CAS  Google Scholar 

  17. Eiamsa-Ard S, Wongcharee K, Kunnarak K, Kumar M, Chuwattabakul V. Heat transfer enhancement of TiO2-water nanofluid flow in dimpled tube with twisted tape insert. Heat and Mass Transf. 2019;55(10):2987–3001.

    Article  CAS  Google Scholar 

  18. Jafaryar M, Sheikholeslami M, Li Z. CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator. Powder Technol. 2018;336:131–43.

    Article  CAS  Google Scholar 

  19. He W, Toghraie D, Lotfipour A, Pourfattah F, Karimipour A, Afrand M. Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube. ICHMT. 2020;110: 104440.

    CAS  Google Scholar 

  20. Ju Y, Zhu T, Mashayekhi R, Mohammad HI, Khan A, Talebizadehsardari P, Yaïci W. Evaluation of multiple semi-twisted tape inserts in a heat exchanger pipe using Al2O3 nanofluid. Nanomaterials. 2021;11(6):1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miandoab AR, Bagherzadeh SA, Isfahani AHM. Numerical study of the effects of twisted-tape inserts on heat transfer parameters and pressure drop across a tube carrying graphene oxide nanofluid: an optimization by implementation of artificial neural network and genetic algorithm. Eng Anal Bound Elem. 2022;140:1–11.

    Article  Google Scholar 

  22. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    Article  CAS  Google Scholar 

  23. Samruaisin P, Kunlabud S, Kunnarak K, Chuwattanakul V, Eiamsa-Ard S. Intensification of convective heat transfer and heat exchanger performance by the combined influence of a twisted tube and twisted tape. Case Stud Therm Eng. 2019;14: 100489.

    Article  Google Scholar 

  24. Singh SK, Sarkar J. Improving hydrothermal performance of double-tube heat exchanger with modified twisted tape inserts using hybrid nanofluid. J Therm Anal Calorim. 2021;143(6):4287–98.

    Article  CAS  Google Scholar 

  25. Cao Y, Alam M, Popoola O, Mechanically driven oscillating flow cooling loops–a review. FHMT. 2019;13.

  26. Alam MD, Almas M, Soleimanikutanaei S, Cao Y. Experimental and analytical studies of reciprocating flow heat transfer in a reciprocating loop device for electronics cooling. Fluids. 2022;7(4):132.

    Article  CAS  Google Scholar 

  27. Loong TT, Salleh H, Khalid A, Koten H. Thermal performance evaluation for different type of metal oxide water based nanofluids. Case Stud Therm Eng. 2021;27: 101288.

    Article  Google Scholar 

  28. Wang G, Qi C, Liu M, Li C, Yan Y, Liang L. Effect of corrugation pitch on thermo-hydraulic performance of nanofluids in corrugated tubes of heat exchanger system based on exergy efficiency. Energy Convers Manag. 2019;186:51–65.

    Article  CAS  Google Scholar 

  29. Kadivar M, Sharifpur M, Meyer JP. Convection heat transfer, entropy generation analysis and thermodynamic optimization of nanofluid flow in spiral coil tube. Heat Transf Eng. 2021;42(18):1573–89.

    Article  CAS  Google Scholar 

  30. Qi C, Luo T, Liu M, Fan F, Yan Y. Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers Manag. 2019;197: 111877.

    Article  CAS  Google Scholar 

  31. Ali A, Saleem S, Mumraiz S, Saleem A, Awais M, Khan Marwat D. Investigation on TiO2–Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material. J Therm Anal Calorim. 2021;143(3):1985–96.

    Article  CAS  Google Scholar 

  32. Gülüm M, Bilgin A. Two-dimensional surface models to predict the density of biodiesel-diesel-alcohol ternary blends. Energy Sour A Recovery Utilization Environ Eff. 2021;43(5):517–87.

    Article  Google Scholar 

  33. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf an Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  34. Satti JR, Das DK, Ray D. Specific heat measurements of five different propylene glycol based nanofluids and development of a new correlation. Int J Heat Mass Transf. 2016;94:343–53.

    Article  CAS  Google Scholar 

  35. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  36. Gulum M, Bilgin A. Measurement and prediction of density and viscosity of different diesel-vegetable oil binary blends. RTU Zinatniskie Raksti. 2019;23(1):214–28.

    CAS  Google Scholar 

  37. Bilgin A, Gulum M. Effects of various transesterification parameters on the some fuel properties of hazelnut oil methyl ester. Energy Procedia. 2018;147:54–62.

    Article  CAS  Google Scholar 

  38. Einstein A. Investigations on the Theory of the Brownian Movement. Courier Corporation; 1956.

    Google Scholar 

  39. Drew DA, Passman SL. Theory of multicomponent fluids. Springer Science & Business Media; 2006.

    Google Scholar 

  40. Wang X, Xu X, Choi SU. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  41. Murshed S, Leong K, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm. 2008;47(5):560–8.

    Article  CAS  Google Scholar 

  42. Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  43. Nielsen LE. Generalized equation for the elastic moduli of composite materials. J Appl Phys. 1970;41(11):4626–7.

    Article  Google Scholar 

  44. Krieger IM, Dougherty TJ. A mechanism for non-newtonian flow in suspensions of rigid spheres. T Soc Rheol. 1959;3(1):137–52.

    Article  CAS  Google Scholar 

  45. Hemmat Esfe M, Alidoust S. Modeling and precise prediction of thermophysical attributes of water/EG blend-based CNT nanofluids by NSGA-II using ANN and RSM. AJSE. 2021;46(7):6423–33.

    CAS  Google Scholar 

  46. Esfe MH, Kamyab MH, Toghraie D, "Statistical review of studies on the estimation of thermophysical properties of nanofluids using artificial neural network (ANN). Powder Technol. 2022; p. 117210.

  47. Hamilton RL, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    Article  CAS  Google Scholar 

  48. Yu W, Choi S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res. 2003;5(1):167–71.

    Article  CAS  Google Scholar 

  49. Levin M, Miller M. Maxwell a treatise on electricity and magnetism. UFN. 1981;135(3):425–40.

    Article  Google Scholar 

  50. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew Sustain Energy Rev. 2015;49:444–69.

    Article  Google Scholar 

  51. Bergman TL, Bergman TL, Incropera FP, Dewitt DP, Lavine AS. Fundamentals of heat and mass transfer. John Wiley & Sons; 2011.

    Google Scholar 

  52. Coleman HW, Steele WG. Experimentation, validation, and uncertainty analysis for engineers. John Wiley & Sons; 2018.

    Book  Google Scholar 

  53. Sieder EN, Tate GE. Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem. 1936;28(12):1429–35.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Qasemian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamati, A., Qasemian, A., Keshavarz, A. et al. Heat transfer characteristics of automatic transmission nanofluid with twisted tape: an experimental study. J Therm Anal Calorim 148, 3751–3763 (2023). https://doi.org/10.1007/s10973-023-11950-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11950-7

Keywords

Navigation