Skip to main content
Log in

Analysis of aligned magnetic field, flow separation and stability in a porous medium saturated by hybrid nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This investigation is aimed to look at the significance of Joule heating and aligned magnetic effects in porous media saturated by a Ti-alloy/multi-wall carbon nanotube (MWCNT)-water based hybrid nanofluid in the presence of heat generation and velocity slip toward an exponentially shrinking surface. The Tiwari–Das approach is used to develop the mathematical modeling, which is then converted into system of nonlinear ODEs using appropriate similarity transformations. The dual solutions are noticed for the resultant boundary value problem using Newton–Raphson and Runge–Kutta based shooting scheme and then the comparative analysis is provided with existing results. Among these solutions, the first solution is found to be more stable and physically valid over time according to the smallest eigenvalue approach of linear temporal stability analysis. The important outcomes of this study, based on the stable solutions, are: (i) the hybrid nanofluid’s Nusselt number, skin friction, velocity and temperatures rise when the inclined magnetic parameter rises, (ii) the delay of boundary layer separation is noticed with enhancing values of the first-order slip, Darcy porosity and inclined magnetic parameters, (iii) the value of smallest eigenvalue is growing with growing values of the inclined magnetic parameter, and (iv) the thickness of momentum and thermal boundary layers is thinner for the first solution than the second solution. In addition, the delay in boundary layer separation occurs with increasing values of the first-order slip, porosity, and aligned magnetic parameters and decreasing values of the Joule heating parameter. Finally, the streamline patterns are provided in this study to have a better understanding of the fluid flow behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(a_1\) :

Velocity slip factor

b :

Velocity parameter of the shrinking surface

\(b_1\) :

Initial length of slip factor

B(x):

Variable magnetic field

\(B_{0}\) :

Strength of the magnetic field

\(C_\text {f}\) :

Skin friction coefficient

\(C_\text {p}\) :

Specific heat capacity with uniform pressure

f :

Dimensionless free stream function

J :

Joule parameter

k :

Thermal conductivity

\(k^*_\text {p}\) :

Permeability of the porous medium

\(k_\text {f}\) :

Thermal conductivity of the base fluid

\(k_\text {s}\) :

Thermal conductivity of the solid nanoparticles

\(k_\text {hnf}\) :

Thermal conductivity of the hybrid nanofluid

\(k_\text {nf}\) :

Thermal conductivity of the nanofluid

Q :

Heat generation parameter

L :

Characteristic length

M :

Magnetic parameter

\({\text {Nu}}_{\text {x}}\) :

Local Nusselt number

Pd:

Darcy porosity parameter

Pr:

Prandtl number

\(q_{\text {w}}\) :

Surface heat flux

\({\text {Re}}_{\text {x}}\) :

Local Reynolds number

S :

Dimensionless suction/injection parameter

t :

Time variable

T :

Fluid temperature

\(T_\text {o}\) :

Temperature parameter of the shrinking surface

\(T_\text {w}\) :

Wall temperature

\(T_{\infty }\) :

Ambient temperature

(uv):

Velocity components in x and y directions

\(u_\text {w}(x)\) :

Velocity of the shrinking sheet

\(u_{\infty }(x)\) :

Free stream velocity

\(v_\text {w}(x)\) :

Suction or injection velocity

xy :

Coordinates along and normal to the surface

\(\eta\) :

Dimensionless similarity variable

\(\epsilon\) :

Porosity

\(\alpha\) :

First-order slip parameter

\(\gamma\) :

Incline angle

\(\lambda\) :

Shrinking parameter

\(\mu _\text {f}\) :

Dynamic viscosity of the base fluid

\(\mu _\text {hnf}\) :

Dynamic viscosity of the hybrid nanofluid

\(\mu _\text {nf}\) :

Dynamic viscosity of the nanofluid

\(\nu _\text {f}\) :

Kinematic viscosity of the base fluid

\(\psi\) :

Stream function

\(\phi _{\text {M}}\) :

MWCNT nanoparticle’s volume fraction

\(\phi _{\text {T}}\) :

Ti-alloy nanoparticle’s volume fraction

\(\rho\) :

Density

\(\rho _\text {f}\) :

Density for the base fluid

\(\rho _\text {hnf}\) :

Density of the hybrid nanofluid

\(\rho _\text {nf}\) :

Density of the nanofluid

\(\rho _{\text{s}}\) :

Density of the solid nanoparticles

\((\rho C_\text {p})\) :

Heat capacity

\((\rho C_\text {p})_\text {f}\) :

Heat capacity of the base fluid

\((\rho C_\text {p})_\text {hnf}\) :

Heat capacity of the hybrid nanofluid

\((\rho C_\text {p})_\text {nf}\) :

Heat capacity of the nanofluid

\((\rho C_\text {p})_\text {s}\) :

Heat capacity of the solid nanoparticles

\(\sigma _{1}\) :

Unknown eigenvalue

\(\sigma _\text {f}\) :

Electric conductivity of the base fluid

\(\sigma _\text {hnf}\) :

Electric conductivity of the hybrid nanofluid

\(\sigma _\text {nf}\) :

Electric conductivity of the nanofluid

\(\sigma _{\text{s}}\) :

Electric conductivity of the solid nanoparticles

\(\tau\) :

Time variable

\(\tau _{\text {w}}\) :

Wall shear stress

\(\theta\) :

Dimensionless temperature

w:

Wall condition

\(\infty\) :

Ambient condition

References

  1. Crane LJ. Flow past a stretching plate. Z Angew Math Phys. 1970;21(4):645–7.

    Article  Google Scholar 

  2. Gupta PS, Gupta AS. Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng. 1977;55(6):744–6.

    Article  Google Scholar 

  3. Wang CY. Liquid film on an unsteady stretching surface. Q Appl Math. 1990;48(4):601–10.

    Article  Google Scholar 

  4. Bhattacharyya K. Steady boundary layer flow and reactive mass transfer past an exponentially stretching surface in an exponentially moving free stream. J Egypt Math Soc. 2012;20(3):223–8.

    Article  Google Scholar 

  5. Magyari E, Keller B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J Phys D Appl Phys. 1999;32(5):577.

    Article  CAS  Google Scholar 

  6. Elbashbeshy EMA. Heat transfer over an exponentially stretching continuous surface with suction. Arch Mech. 2001;53(6):643–51.

    CAS  Google Scholar 

  7. Liu IC, Wang HH, Peng YF. Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chem Eng Commun. 2012;200(2):253–68.

    Article  Google Scholar 

  8. Ghosh S, Mukhopadhyay S. Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip. Neural Comput Appl. 2020;32(11):7201–11.

    Article  Google Scholar 

  9. Miklavčič M, Wang C. Viscous flow due to a shrinking sheet. Q Appl Math. 2006;64(2):283–90.

    Article  Google Scholar 

  10. Merkin JH. On dual solutions occurring in mixed convection in a porous medium. J Eng Math. 1986;20(2):171–9.

    Article  Google Scholar 

  11. Harris SD, Ingham DB, Pop I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp Porous Med. 2009;77(2):267–85.

    Article  Google Scholar 

  12. Kameswaran PK, Sibanda P, RamReddy C, Murthy PV. Dual solutions of stagnation-point flow of a nanofluid over a stretching surface. Bound Value Probl. 2013;188(1):1–2.

    Google Scholar 

  13. RamReddy C, Muralikrishna P. Effects of first and second order velocity slips on melting stretching surface in a thermally stratified nanofluid: Tiwari and Das’ model. J Nanofluids. 2017;6(1):155–63.

    Article  Google Scholar 

  14. Chamkha AJ. Solar radiation assisted natural convection in uniform porous medium supported by a vertical flat plate. J Heat Transf. 1997;119(1):89–96.

    Article  CAS  Google Scholar 

  15. Pop I, Ingham DB. Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media, Elsevier Science Ltd, Kidlington, Oxford OX5 1GB, UK. 2001.

  16. Nield DA, Bejan A. Convection in Porous Media. New York: Springer International Publishing; 2017.

    Book  Google Scholar 

  17. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL (United States). 1995.

  18. Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S, Afrand M. A comprehensive review on rheological behavior of mono and hybrid nanofluid: effective parameters and predictive correlations. Int J Heat Mass Transf. 2018;127:997–1012.

    Article  CAS  Google Scholar 

  19. Esfe MH, Afrand M. An updated review on the nanofluid characteristics. J Thermal Anal Calorim. 2019;138(6):4091–101.

    Article  CAS  Google Scholar 

  20. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluid in various heat transfer devices. J Thermal Anal Calorim. 2021;145(6):2817–72.

    Article  CAS  Google Scholar 

  21. Acharya N, Das K, Kundu PK. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel. J Thermal Anal Calorim. 2019;138(1):461–77.

    Article  CAS  Google Scholar 

  22. Acharya N. On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy. J Thermal Anal Calorim. 2020;141(4):1425–42.

    Article  CAS  Google Scholar 

  23. Acharya N, Mabood F. On the hydrothermal features of radiative Fe3O4-graphene hybrid nanofluid flow over a slippery bended surface with heat source/sink. J Thermal Anal Calorim. 2021;143(2):1273–89.

    Article  CAS  Google Scholar 

  24. Ayub R, Ahmad S, Ahmad S, Akhtar Y, Alam MM, Mahmoud O. Numerical Assessment of Dipole Interaction with the Single-Phase Nanofluid Flow in an Enclosure: A Pseudo-Transient Approach. Materials. 2022;15(8):2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmad S, Akhter S, Shahid MI, Ali K, Akhtar M, Ashraf M. Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms. Ain Shams Eng J. 2022;13(5):101668.

    Article  Google Scholar 

  26. Acharya N, Mabood F, Badruddin IA. Thermal performance of unsteady mixed convective Ag/MgO nanohybrid flow near the stagnation point domain of a spinning sphere. Int Commun Heat Mass Transf. 2022;134:106019.

    Article  CAS  Google Scholar 

  27. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al\(_2\)O\(_3\)-Cu/water hybrid nanofluid using two step method and its thermo physical properties. Colloids Surf A Physicochem Eng Asp. 2011;388(1–3):41–8.

    Article  CAS  Google Scholar 

  28. Leong KY, Ahmad KK, Ong HC, Ghazali MJ, Baharum A. Synthesis and thermal conductivity characteristic of hybrid nanofluid-a review. Renew Sustain Energy Rev. 2017;75:868–78.

    Article  CAS  Google Scholar 

  29. Rostami MN, Dinarvand S, Pop I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chin J Phys. 2018;56(5):2465–78.

    Article  CAS  Google Scholar 

  30. Waini I, Ishak A, Pop I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int J Heat Mass Transf. 2019;136:288–97.

    Article  CAS  Google Scholar 

  31. Sreedevi P, Sudarsana Reddy P, Chamkha A. Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Appl Sci. 2020;2(7):1–5.

    Article  Google Scholar 

  32. Peters M, Kumpfert J, Ward CH, Leyens C. Titanium alloys for aerospace applications. Adv Eng Mater. 2003;5(6):419–27.

    Article  CAS  Google Scholar 

  33. Singh P, Pungotra H, Kalsi NS. On the characteristics of titanium alloys for the aircraft applications. Mater Today. 2017;4(8):8971–82.

    CAS  Google Scholar 

  34. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–8.

    Article  CAS  Google Scholar 

  35. RamReddy C, Srivastav A. Aqueous Titanium alloy-MWCNTs hybrid nanofluid flow in a non-Darcy porous medium. Comput Therm Sci. 2021;13(5):31–43.

    Article  Google Scholar 

  36. RamReddy C, Srivastav A. Numerical study and error estimation in power-law nanofluid flow over vertical frustum of a cone. Indian J Phys. 2022;96:1167–79.

    Article  Google Scholar 

  37. Vajravelu K, Rollins D. Heat transfer in an electrically conducting fluid over a stretching surface. Int J Non Linear Mech. 1992;27(2):265–77.

    Article  Google Scholar 

  38. Raju CSK, Sandeep N, Sugunamma V. Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity: a surgical implant application. J Mol Liq. 2016;222:1183–91.

    Article  CAS  Google Scholar 

  39. Mortuja Sarkar G, Sahoo B. Dual solutions of a magnetohydrodynamic stagnation point flow of a non-Newtonian fluid over a shrinking sheet and a linear temporal stability analysis. Proc Inst Mech Eng E: J Process Mech Eng. 2021;235(2):527–35.

    Article  Google Scholar 

  40. Anuar NS, Bachok N, Arifin NM, Rosali H. MHD flow past a nonlinear stretching/shrinking sheet in carbon nanotubes: stability analysis. Chin J Phys. 2020;65:436–46.

    Article  CAS  Google Scholar 

  41. Waini I, Ishak A, Pop I. Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chin J Phys. 2020;68:468–82.

    Article  CAS  Google Scholar 

  42. Takhar HS, Chamkha AJ, Nath G. Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field. Int J Eng Sci. 1999;37(13):1723–36.

    Article  Google Scholar 

  43. Srinivasulu T, Goud BS. Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Stud Therm Eng. 2021;23:100819.

    Article  Google Scholar 

  44. Mahato R, Das M, Nandkeolyar R, Mahala BK. Inclined magnetic field and nonlinear thermal radiation effects on nanofluids flow with homogeneous-heterogeneous reactions. In: AIP Conference Proceedings. AIP Publishing LLC; 2022. Vol. 2435(1), p. 020009.

  45. Swain K, Animasaun IL, Ibrahim SM. Influence of exponential space-based heat source and Joule heating on nanofluid flow over an elongating/shrinking sheet with an inclined magnetic field. Int J Ambient Energy. 2022;43(1):4045–57.

    Article  CAS  Google Scholar 

  46. VeeraKrishna M, Subba Reddy G, Chamkha AJ. Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates. Phys Fluids. 2018;30(2):023106.

    Article  Google Scholar 

  47. Krishna MV, Chamkha AJ. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int Commun Heat Mass Transf. 2020;113:104494.

    Article  CAS  Google Scholar 

  48. Chamkha AJ. MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects. Appl Math Model. 1997;21(10):603–9.

    Article  Google Scholar 

  49. Takhar HS, Chamkha AJ, Nath G. MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity. Int J Eng Sci. 2002;40(13):1511–27.

    Article  Google Scholar 

  50. Chamkha AJ. Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects. Numer Heat Transf A. 1997;32(6):653–75.

    Article  Google Scholar 

  51. Chamkha AJ. Non-Darcy hydromagnetic free convection from a cone and a wedge in porous media. Int Commun Heat Mass Transf. 1996;23(6):875–87.

    Article  CAS  Google Scholar 

  52. Chamkha AJ, Ben-Nakhi A. MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s effects. Heat Mass Transf. 2008;44(7):845–56.

    Article  Google Scholar 

  53. Roberts P. Convection in horizontal layers with internal heat generation. Theory J Fluid Mech. 1967;30(1):33–49.

    Article  Google Scholar 

  54. Hardee HC, Nilson RH. Natural convection in porous media with heat generation. Nucl Sci Eng. 1977;63(2):119–32.

    Article  CAS  Google Scholar 

  55. Chamkha AJ. Hydromagnetic three-dimensional free convection on a vertical stretching surface with heat generation or absorption. Int J Heat Fluid Flow. 1999;20(1):84–92.

    Article  CAS  Google Scholar 

  56. Chamkha AJ, Al-Mudhaf AF, Pop I. Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. Int Commun Heat Mass Transf. 2006;33(9):1096–102.

    Article  Google Scholar 

  57. Jafar AB, Shafie S, Ullah I. MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium. Heliyon. 2020;6(6):e04201.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sedki AM, Abo-Dahab SM, Bouslimi J, Mahmoud KH. Thermal radiation effect on unsteady mixed convection boundary layer flow and heat transfer of nanofluid over permeable stretching surface through porous medium in the presence of heat generation. Sci Prog. 2021;104(3):1–19.

    Article  Google Scholar 

  59. Ismail NS, Ariffin NM, Nazar R, Bachok N. Stability analysis of stagnation-point flow and heat transfer over an exponentially shrinking sheet with heat generation. Malays J Math Sci. 2019;13(2):107–22.

    Google Scholar 

  60. Yan L, Dero S, Khan I, Mari IA, Baleanu D, Nisar KS, Sherif ESM, Abdo HS. Dual solutions and stability analysis of magnetized hybrid nanofluid with Joule heating and multiple slip conditions. Process. 2020;8(3):332.

    Article  CAS  Google Scholar 

  61. Ramreddy C, Saran HL. Dual solutions and their stability analysis for inclined magnetohydrodynamics and Joule effects in Ti-alloy nanofluid: Flow separation. Proc Inst Mech Eng E: J Process Mech Eng. 2022;236(6):2558–69.

    Article  CAS  Google Scholar 

  62. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–571.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. RamReddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saran, H.L., RamReddy, C. Analysis of aligned magnetic field, flow separation and stability in a porous medium saturated by hybrid nanofluids. J Therm Anal Calorim 148, 3765–3781 (2023). https://doi.org/10.1007/s10973-023-11946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11946-3

Keywords

Navigation