Skip to main content
Log in

Composites based on cotton fabrics, acrylic rubber and powder from used tires: thermal and electrical characterization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Tire production shows a high annual growth followed by approximately the same increase in waste generation. Because used tires present an insignificant degree of natural degradation, having high strength, elasticity and long life time, a series of new technologies for tire waste processing were developed. A new method may consist of the using of tires as raw materials in the obtaining of composites for house and industrial applications. Such composites may be obtained from rubber powder of tires, fabrics from used textiles and rubber solutions. These composites can be characterized in terms of thermal characteristics with the aid of thermogravimetric analysis (TGA) connected with simultaneous FT-IR/MS analysis and with dielectric relaxation spectroscopy. With Netzsch “Thermokinetics-3” software it was demonstrated that the thermal degradation is complicated and takes place in several stages. Through FT-IR and MS analysis of the products released during thermal degradation it has been established that the main gases are CO, CO2, methane, ethane, ethene, propane propene, butane, butene, C5 fractions, unsaturated and higher saturated hydrocarbons and aromatic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Machin EB, Pedroso DT, Carvalho JA Jr. Energetic valorization of waste tyres. Renew Sustain Energy Rev. 2017;68:306–15. https://doi.org/10.1016/j.rser.2016.09.110.

    Article  Google Scholar 

  2. https://www.wbcsd.org/Sector-Projects/Tire-Industry-Project/End-of-Life-Tires-ELTs. Accessed 15 Apr 2022.

  3. Martınez JD, Puy N, Murillo R, Garcıa T, Navarro MV, Mastral AM. Waste tyre pyrolysis–a review. Renew Sustain Energy Rev. 2013;23:179–213. https://doi.org/10.1016/j.rser.2013.02.038.

    Article  CAS  Google Scholar 

  4. Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas A. Progress in used tyres management in the European Union: a review. Waste Manag. 2012;32:1742–51. https://doi.org/10.1016/j.wasman.2012.05.010.

    Article  CAS  PubMed  Google Scholar 

  5. Shah J, Jan MR, Mabood F, Shahid M. Conversion of waste tyres into carbon black and their utilization as adsorbent. J Chin Chem Soc Taip. 2006;53:1085–9. https://doi.org/10.1002/jccs.200600144.

    Article  CAS  Google Scholar 

  6. Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv Colloid Interface. 2014;211:93–101. https://doi.org/10.1016/j.cis.2014.06.006.

    Article  CAS  Google Scholar 

  7. Quek A, Balasubramanian R. Liquefaction of waste tires by pyrolysis for oil and chemicals: a review. J Anal Appl Pyrolysis. 2013;101:1–16. https://doi.org/10.1016/j.jaap.2013.02.016.

    Article  CAS  Google Scholar 

  8. Wang WC, Bai CJ, Lin CT, Prakash S. Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine. Appl Therm Eng. 2016;93:330–8. https://doi.org/10.1016/j.applthermaleng.2015.09.056.

    Article  CAS  Google Scholar 

  9. Williams PT. Pyrolysis of waste tyres: a review. Waste Manag. 2013;33:1714–28. https://doi.org/10.1016/j.wasman.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  10. Sharma VK, Fortuna F, Mincarini M, Berillo M, Cornacchia G. Disposal of waste tyres for energy recovery and safe environment. Appl Energy. 2000;65:381–94. https://doi.org/10.1016/S0306-2619(99)00085-9.

    Article  CAS  Google Scholar 

  11. Barlaz MA, Eleazer WE II, Whittle DJ. Potential to use waste tires as supplemental fuel in pulp and paper mill boilers, cement kilns and in road pavement. Waste Manag Res. 1993;11(6):463–80.

    Article  CAS  Google Scholar 

  12. Conesa JA, Galvez A, Mateos F, Martın-Gullon I, Font R. Organic and inorganic pollutants from cement kiln stack feeding alternative fuels. J Hazard Mater. 2008;158:585–92. https://doi.org/10.1016/j.jhazmat.2008.01.116.

    Article  CAS  PubMed  Google Scholar 

  13. Lin S-Y. An overview of advanced hyphenated techniques for simultaneous analysis and characterization of polymeric materials. Crit Rev Solid State. 2016;41:482–530. https://doi.org/10.1080/10408436.2016.1186598.

    Article  CAS  Google Scholar 

  14. Rajkumar T, Vijayakumar CT, Sivasamy P, Sreedhar B, Wilkie CA. Thermal degradation studies on PMMA–HET acid based oligoesters blends. J Therm Anal Calorim. 2010;100:651–60. https://doi.org/10.1007/s10973-009-0266-2.

    Article  CAS  Google Scholar 

  15. Yan Y-W, Huang J-Q, Guan Y-H, Shang K, Jian R-K, Wang Y-Z. Flame retardance and thermal degradation mechanism of polystyrene modified with aluminum hypophosphite. Polym Degrad Stab. 2014;99:35–42. https://doi.org/10.1016/j.polymdegradstab.2013.12.014.

    Article  CAS  Google Scholar 

  16. Worzakowska M. TG/FTIR/QMS studies of long chain esters of geraniol. J Anal Appl Pyrolysis. 2014;110:181–93. https://doi.org/10.1016/j.jaap.2014.09.002.

    Article  CAS  Google Scholar 

  17. Collard F-X, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev. 2014;38:594–608. https://doi.org/10.1016/j.rser.2014.06.013.

    Article  CAS  Google Scholar 

  18. Du Y, Ju T, Meng Y, Han S, Jiang J. Pyrolysis characteristics of excavated waste and generation mechanism of gas products. J Clean Prod. 2022;370:133489. https://doi.org/10.1016/j.jclepro.2022.133489.

    Article  CAS  Google Scholar 

  19. Benhammada A, Trache D. Thermal decomposition of energetic materials using TG-FTIR and TG-MS: a state-of-the-art review. Appl Spectrosc Rev. 2020;55(8):724–77. https://doi.org/10.1080/05704928.2019.1679825.

    Article  CAS  Google Scholar 

  20. Ramírez Arias AM, Moreno-Piraján JC, Giraldo L. Kinetic study of waste tire pyrolysis using thermogravimetric analysis. ACS Omega. 2022;7(19):16298–305. https://doi.org/10.1021/acsomega.1c06345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh RK, Ruj B, Jana A, Mondal S, Jana B, Sadhukhan AK, Gupta P. Pyrolysis of three different categories of automotive tyre wastes: product yield analysis and characterization. J Anal Appl Pyrolysis. 2018;135:379–89. https://doi.org/10.1016/j.jaap.2018.08.011.

    Article  CAS  Google Scholar 

  22. Risoluti R, Gullifa G, Barone L, Papa E, Materazzi S. On-line thermally induced evolved gas analysis: an update. Part 1: EGA-MS. Molecules. 2022;27(11):3518. https://doi.org/10.3390/molecules27113518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang B, Chen M. Py–FTIR–GC/MS analysis of volatile products of automobile shredder residue pyrolysis. Polymers. 2020;12(11):2734. https://doi.org/10.3390/polym12112734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. ASTM D854 – 14: Standard test methods for specific gravity of soil solids by water pycnometer

  25. ASTM D2240-00: Standard test method for rubber property-durometer hardness

  26. Eckelman CA. Wood moisture calculation. In: Forestry and natural resources, Furniture manufacturing. FNR-156, Purdue University, Department of Forestry & Natural Resources, West Lafayette, IN, USA.

  27. http://webbook.nist.gov/chemistry/name-ser.html

  28. Netzsch “Thermokinetics-3”, version 2008.05.

  29. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964;C6:183–95.

    Google Scholar 

  30. Ozawa TA. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  31. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  32. Worzakowska M. The kinetic study of the curing reaction of mono- and di-epoxides obtained during the reaction of divinylbenzene and hydrogen peroxide with acid anhydrides. Polymer. 2007;48(4):1148–54. https://doi.org/10.1016/j.polymer.2006.12.020.

    Article  CAS  Google Scholar 

  33. Edelmann M, Gedan-Smolka M, Heinrich G, Lehmann D. Thermokinetic analysis of two-step curing reactions in melt Part I. Investigation of low molecular model systems. Thermochim Acta. 2007;452(1):59–64. https://doi.org/10.1016/j.tca.2006.10.006.

    Article  CAS  Google Scholar 

  34. Singh T, Sharma C, Singh V, Mukherjee N. Studies on the thermal stability and kinetic parameters of naturally aged Octol formulation. J Therm Anal Calorim. 2021;145:411–21. https://doi.org/10.1007/s10973-020-09750-4.

    Article  CAS  Google Scholar 

  35. Zhu FL, Li X, Feng Q. Thermal decomposed behavior and kinetic study for untreated and flame retardant treated regenerated cellulose fibers using thermogravimetric analysis. J Therm Anal Calorim. 2021;145:423–35. https://doi.org/10.1007/s10973-020-09780-y.

    Article  CAS  Google Scholar 

  36. Shahcheraghi SH, Khayati GR, Ranjbar M. An advanced reaction model determination methodology in solid state kinetics based on Arrhenius parameters variation. Part I. Thermal dehydration kinetic analysis of Cu4SO4(OH)6. J Therm Anal Calorim. 2015;122:175–88. https://doi.org/10.1007/s10973-015-4708-8.

    Article  CAS  Google Scholar 

  37. Aouf C, Nouailhas H, Fache M, Caillol S, Boutevin B, Fulcrand H. Multi-functionalization of gallic acid. Synthesis of a novel bio–based epoxy resin. Eur Polym J. 2013;49:1185–95. https://doi.org/10.1016/j.eurpolymj.2012.11.025.

    Article  CAS  Google Scholar 

  38. Mustata F, Tudorachi N, Asandulesa M, Bicu I. Thermal and electrical behavior of hybrid thermosets based on epoxy and maleimide resins cured with p-aminobenzoic acid. Int J Chem Kinet. 2019;51(10):799–814. https://doi.org/10.1002/kin.21310.

    Article  CAS  Google Scholar 

  39. Rosu D, Mustata F, Tudorachi N, Musteata VE, Rosu L, Varganici C-D. Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A cured with castor oil maleate. RSC Adv. 2015;5(57):45679–87. https://doi.org/10.1039/C5RA05610A.

    Article  CAS  Google Scholar 

  40. Nallasamy P, Mohan S. Vibrational spectra of cis-1.4-polyisoprene. Arab J Sci Eng. 2004;29(1A):17–26.

    CAS  Google Scholar 

  41. Mustata FR, Tudorachi N, Bicu I. Biobased epoxy matrix from diglycidylether of bisphenol A and epoxidized corn oil, crosslinked with Diels-Alder adduct of levopimaric acid with acrylic acid. Ind Eng Chem Res. 2013;52(48):17099–110. https://doi.org/10.1021/ie402221n.

    Article  CAS  Google Scholar 

  42. Mui ELK, Lee VKC, Cheung WH, McKay G. Kinetic modeling of waste tire carbonization. Energy Fuel. 2008;22(3):1650–7. https://doi.org/10.1021/ef700601g.

    Article  CAS  Google Scholar 

  43. Mustata F, Tudorachi N. Curing kinetics and thermal characterization of epoxy resin cured with amidodicarboxylic acids. Appl Therm Eng. 2017;125:285–96. https://doi.org/10.1016/j.applthermaleng.2017.07.037.

    Article  CAS  Google Scholar 

  44. Jiang B, Hao J, Wang W, Jiang L, Cai X. Synthesis and properties of novel polybismaleimide oligomers. Eur Polym J. 2001;37(3):463–70. https://doi.org/10.1016/S0014-3057(00)00147-6.

    Article  Google Scholar 

  45. Chetehouna K, Belayachi N, Rengel B, Hoxha D, Gillard P. Investigation on the thermal degradation and kinetic parameters of innovative insulation materials using TGA-MS. Appl Therm Eng. 2015;81:177–84. https://doi.org/10.1016/j.applthermaleng.2015.02.037.

    Article  CAS  Google Scholar 

  46. Tadini P, Grange N, Chetehouna K, Gascoin N, Senave S, Reynaud I. Thermal degradation analysis of innovative PEKK-based carbon composites for high-temperature aeronautical components. Aerosp Sci Technol. 2017;65:106–16. https://doi.org/10.1016/j.ast.2017.02.011.

    Article  Google Scholar 

  47. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. Hoboken: Wiley & Sons Inc; 2005.

    Google Scholar 

  48. Mustata F, St C, Tudorachi N, Mustata A, Mustata F. Physical and thermal characterization of some cellulose fabrics as reinforced materials for composite. J Therm Anal Calorim. 2015;120:1703–14. https://doi.org/10.1007/s10973-015-4521-4.

    Article  CAS  Google Scholar 

  49. Samet M, Levchenko V, Boiteux G, Seytre G, Kallel A, Serghei A. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies, and scaling laws. J Chem Phys. 2015;142(19):194703. https://doi.org/10.1063/1.4919877.

    Article  CAS  PubMed  Google Scholar 

  50. Asandulesa M, Kostromin S, Podshivalov A, Tameev A, Bronnikov S. Relaxation processes in a polymer composite for bulk heterojunction: a dielectric spectroscopy study. Polymer. 2020;203:122785. https://doi.org/10.1016/j.polymer.2020.122785.

    Article  CAS  Google Scholar 

  51. Larsson O, Said E, Berggren M, Crispin X. Insulator polarization mechanisms in polyelectrolyte-gated organic field-effect transistors. Adv Funct Mater. 2009;19(20):3334–41. https://doi.org/10.1002/adfm.200900588.

    Article  CAS  Google Scholar 

  52. Asandulesa M, Kostromin S, Tameev A, Aleksandrov A, Bronnikov S. Molecular dynamics and conductivity of a PTB7:PC71BM photovoltaic polymer blend: a dielectric spectroscopy study. ACS Appl Polym Mater. 2021;3(10):4869–78. https://doi.org/10.1021/acsapm.1c00610.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Access to the research infrastructure developed through the European Social Fund for Regional Development, Competitiveness Operational Programme Axis 1, Action: 1.1.3, Project “Infra SupraChem Lab–Center for Advanced Research in Supramolecular Chemistry” (Contract 339/390015/25.02.2021, cod MySMIS: 108983) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to accomplishing the work.

Corresponding author

Correspondence to Florin St. C. Mustata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustata, F.S.C., Asandulesa, M., Varganici, C. et al. Composites based on cotton fabrics, acrylic rubber and powder from used tires: thermal and electrical characterization. J Therm Anal Calorim 148, 3325–3339 (2023). https://doi.org/10.1007/s10973-022-11928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11928-x

Keywords

Navigation