Skip to main content
Log in

Preparation, characterization and in vitro evaluation of chitosan nanoparticles for the oral delivery of GLP-1 analog liraglutide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Liraglutide (LIRA) is a GLP-1 analog peptide used for the treatment of type 2 diabetes. Owing to its degradation in the gastrointestinal tract, LIRA is administered via subcutaneous injection. Oral delivery of peptides is a challenge; however, nanotechnology can be an effective strategy against such challenges. In this study, chitosan nanoparticles were developed and characterized as alternative carriers for oral LIRA administration. Nanoparticles were prepared via ionotropic gelation using sodium tripolyphosphate as a cross-linking agent. Chitosan nanoparticles showed spherical shape, mean diameter of 323 nm, polydispersity index of 0.453, zeta potential of + 23.4 mV, as well as 24% encapsulation efficiency. Physicochemical characterization revealed the interaction of LIRA with nanoparticles and its amorphization after nanoencapsulation. In vitro release analysis showed that approximately 34.7% of LIRA was released during 102 h through an anomalous process, making the Baker–Lonsdale model the best fit for the release kinetics. Chitosan nanoparticles protected more than 80% LIRA from degradation in simulated gastric and intestinal fluids and showed be mucoadhesive. Overall of results demonstrated the potential application of chitosan nanoparticles in the oral delivery of LIRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiménez PG, Martín-Carmona J, Hernández EL. Diabetes mellitus. Med. 2020;13(16):883–90.

    Google Scholar 

  2. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care 2020;43(Supplement 1):S14–31. https://doi.org/10.2337/dc20-S002.

  3. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239–51.

    Article  CAS  PubMed  Google Scholar 

  4. Qaseem A, Barry MJ, Humphrey LL, Forciea MA, Fitterman N, Boyd C, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline update from the American college of physicians. Ann Intern Med. 2017;166(4):279–90.

    Article  PubMed  Google Scholar 

  5. Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. 2016;7(17):354.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aschner P. Insulin therapy in type 2 diabetes. Am J Ther. 2020;27(1):E79-90.

    Article  PubMed  Google Scholar 

  7. Mirabelli M, Chiefari E, Caroleo P, Arcidiacono B, Corigliano DM, Giuliano S, et al. Long-term effectiveness of liraglutide for weight management and glycemic control in type 2 diabetes. Int J Environ Res Public Health. 2020;17(1):207.

    Article  CAS  Google Scholar 

  8. Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol (Lausanne). 2019. https://doi.org/10.3389/fendo.2019.00155/full.

    Article  PubMed  Google Scholar 

  9. Li P, Nielsen HM, Müllertz A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin Drug Deliv. 2012;9:1289–304.

    Article  CAS  PubMed  Google Scholar 

  10. Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: formulation and medicinal chemistry approaches. Adv Drug Deliv Rev. 2020;157:2–36.

    Article  CAS  PubMed  Google Scholar 

  11. Brown TD, Whitehead KA, Mitragotri S. Materials for oral delivery of proteins and peptides. Nat Rev Mater. 2020;5(2):127–48. https://doi.org/10.1038/s41578-019-0156-6.

    Article  Google Scholar 

  12. Cao S-j, Xu S, Wang H-m, Ling Y, Dong J, Xia R-d, et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech. 2019. https://doi.org/10.1208/s12249-019-1325-z.

    Article  PubMed  Google Scholar 

  13. Shi Y, Yin M, Song Y, Wang T, Guo S, Zhang X, et al. Oral delivery of liraglutide-loaded Poly-N-(2-hydroxypropyl) methacrylamide/chitosan nanoparticles: preparation, characterization, and pharmacokinetics. J Biomater Appl. 2021;35(7):754–61.

    Article  CAS  PubMed  Google Scholar 

  14. Uhl P, Grundmann C, Sauter M, Storck P, Tursch A, Özbek S, et al. Coating of PLA-nanoparticles with cyclic, arginine-rich cell penetrating peptides enables oral delivery of liraglutide. Nanomed Nanotechnol Biol Med. 2020;24:102132. https://doi.org/10.1016/j.nano.2019.102132.

    Article  CAS  Google Scholar 

  15. Senduran N, Yadav HN, Vishwakarma VK, Bhatnagar P, Gupta P, Bhatia J, et al. Orally deliverable nanoformulation of liraglutide against type 2 diabetic rat model. J Drug Deliv Sci Technol. 2020;56(June 2019):101513. https://doi.org/10.1016/j.jddst.2020.101513.

    Article  CAS  Google Scholar 

  16. Ismail R, Sovány T, Gácsi A, Ambrus R, Katona G, Imre N, et al. Synthesis and statistical optimization of poly (lactic-co-glycolic acid) nanoparticles encapsulating GLP1 analog designed for oral delivery. Pharm Res. 2019;36(7):99.

    Article  CAS  Google Scholar 

  17. Ismail R, Bocsik A, Katona G, Gróf I, Deli MA, Csóka I. Encapsulation in polymeric nanoparticles enhances the enzymatic stability and the permeability of the glp-1 analog, liraglutide, across a culture model of intestinal permeability. Pharmaceutics. 2019;11(11):1–13.

    Article  Google Scholar 

  18. Pallagi E, Ismail R, Paál TL, Csóka I. Initial risk assessment as part of the quality by design in peptide drug containing formulation development. Eur J Pharm Sci. 2018;122:160–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wong CY, Al-Salami H, Dass CR. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation. J Drug Target. 2018;26:551–62.

    Article  CAS  PubMed  Google Scholar 

  20. Das Neves J, Bahia MF, Amiji MM, Sarmento B. Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv. 2011;8:1085–104.

    Article  CAS  PubMed  Google Scholar 

  21. Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–32.

    Article  CAS  Google Scholar 

  22. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42.

    Article  CAS  Google Scholar 

  23. Sandri G, Rossi S, Bonferoni MC, Ferrari F, Mori M, Caramella C. The role of chitosan as a mucoadhesive agent in mucosal drug delivery. J Drug Deliv Sci Technol. 2012;22:275–84.

    Article  CAS  Google Scholar 

  24. Svensson O, Thuresson K, Arnebrant T. Interactions between chitosan-modified particles and mucin-coated surfaces. J Colloid Interface Sci. 2008;325(2):346–50.

    Article  CAS  PubMed  Google Scholar 

  25. Mohanraj VJ, Chen Y. 2007 Nanoparticles—a review. Trop J Pharm Res. 5(1). Available from http://www.ajol.info/index.php/tjpr/article/view/14634

  26. Wang J, Chin D, Poon C, Mancino V, Pham J, Li H, et al. Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. J Control Release. 2021;329:1198–209.

    Article  CAS  PubMed  Google Scholar 

  27. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–70.

    Article  CAS  PubMed  Google Scholar 

  28. He Z, Santos JL, Tian H, Huang H, Hu Y, Liu L, et al. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials. 2017;130:28–41.

    Article  CAS  PubMed  Google Scholar 

  29. Wei Y, Huang YH, Cheng KC, Song YL. Investigations of the influences of processing conditions on the properties of spray dried chitosan-tripolyphosphate particles loaded with theophylline. Sci Rep. 2020;10(1):1–12.

    Google Scholar 

  30. Çakır MA, Icyer NC, Tornuk F. Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int J Biol Macromol. 2020;151:230–8.

    Article  PubMed  Google Scholar 

  31. Seyedebrahimi R, Razavi S, Varshosaz J. Controlled delivery of brain derived neurotrophic factor and gold-nanoparticles from chitosan/TPP nanoparticles for tissue engineering applications. J Clust Sci. 2020;31(1):99–108.

    Article  CAS  Google Scholar 

  32. Fahmy HM, Khardrawy YA, Abd-El Daim TM, Elfeky AS, Abd Rabo AA, Mustafa AB, et al. Thymoquinone-encapsulated chitosan nanoparticles coated with polysorbate 80 as a novel treatment agent in a reserpine-induced depression animal model. Physiol Behav. 2020;222:112934.

    Article  CAS  PubMed  Google Scholar 

  33. Valderrama NA, Jacinto HC, Lay J, Flores EY, Zavaleta CD, Delfín AR. Factorial design for preparing chitosan nanoparticles and its use for loading and controlled release of indole-3-acetic acid with effect on hydroponic lettuce crops. Biocatal Agric Biotechnol. 2020;26:101640.

    Article  Google Scholar 

  34. Thirumalaikumar E, Lelin C, Sathishkumar R, Vimal S, Anand SB, Babu MM, et al. Oral delivery of pVAX-OMP and pVAX-hly DNA vaccine using chitosan-tripolyphosphate (Cs-TPP) nanoparticles in Rohu, (Labeo rohita) for protection against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2021;115:189–97.

    Article  CAS  PubMed  Google Scholar 

  35. Pan C, Qian J, Zhao C, Yang H, Zhao X, Guo H. Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles. Carbohydr Polym. 2020;241:116349.

    Article  CAS  PubMed  Google Scholar 

  36. Abosabaa SA, Elmeshad AN, Arafa MG. Chitosan nanocarrier entrapping hydrophilic drugs as advanced polymeric system for dual pharmaceutical and cosmeceutical application: a comprehensive analysis using box–behnken design. Polymers (Basel). 2021;13(5):1–18.

    Article  Google Scholar 

  37. Du Z, Liu J, Zhang T, Yu Y, Zhang Y, Zhai J, et al. A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Food Chem. 2019;286:530–6.

    Article  CAS  PubMed  Google Scholar 

  38. Yousefi M, Khorshidian N, Mortazavian AM, Khosravi-Darani K. Preparation optimization and characterization of chitosan-tripolyphosphate microcapsules for the encapsulation of herbal galactagogue extract. Int J Biol Macromol. 2019;140:920–8.

    Article  CAS  PubMed  Google Scholar 

  39. Vimal S, Majeed SA, Taju G, Nambi KSN, Raj NS, Madan N, et al. Chitosan tripolyphosphate (CS/TPP) nanoparticles: Preparation, characterization and application for gene delivery in shrimp. Acta Trop. 2013;128(3):486–93. https://doi.org/10.1016/j.actatropica.2013.07.013.

    Article  CAS  PubMed  Google Scholar 

  40. Moeini A, Cimmino A, Dal Poggetto G, Di Biase M, Evidente A, Masi M, et al. Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of chitosan-TPP-ungeremine microbeads. Carbohydr Polym. 2018;195:631–41. https://doi.org/10.1016/j.carbpol.2018.05.005.

    Article  CAS  PubMed  Google Scholar 

  41. Azevedo JR, Sizilio RH, Brito MB, Costa AMB, Serafini MR, Araújo AAS, et al. Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles. J Therm Anal Calorim. 2011;106(3):685–9.

    Article  CAS  Google Scholar 

  42. Lazaridou M, Christodoulou E, Nerantzaki M, Kostoglou M, Lambropoulou DA, Katsarou A, et al. Formulation and in-vitro characterization of chitosan-nanoparticles loaded with the iron chelator deferoxamine mesylate (DFO). Pharmaceutics. 2020;12(3):238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ta Q, Ting J, Harwood S, Browning N, Simm A, Ross K, et al. Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. Eur J Pharm Sci. 2021;160:105765.

    Article  CAS  PubMed  Google Scholar 

  44. de Carvalho FG, Magalhães TC, Teixeira NM, Gondim BLC, Carlo HL, dos Santos RL, et al. Synthesis and characterization of TPP/chitosan nanoparticles: colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater Sci Eng C. 2019;104(June):109885.

    Article  Google Scholar 

  45. Severino P, da Silva CF, da Silva MA, Santana MHA, Souto EB. Chitosan cross-linked pentasodium tripolyphosphate micro/nanoparticles produced by ionotropic gelation. Sugar Tech. 2016;18(1):49–54.

    Article  CAS  Google Scholar 

  46. Wu J, Wang Y, Yang H, Liu X, Lu Z. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr Polym. 2017;175:170–7.

    Article  CAS  PubMed  Google Scholar 

  47. Cho AR, Chun YG, Kim BK, Park DJ. Preparation of chitosan-TPP microspheres as resveratrol carriers. J Food Sci. 2014;79(4):E568–76.

    Article  CAS  PubMed  Google Scholar 

  48. Safari J, Azizi F, Sadeghi M. Chitosan nanoparticles as a green and renewable catalyst in the synthesis of 1,4-dihydropyridine under solvent-free conditions. New J Chem. 2015;39(3):1905–9.

    Article  CAS  Google Scholar 

  49. Javaid MA, Rizwan M, Khera RA, Zia KM, Saito K, Zuber M, et al. Thermal degradation behavior and x-ray diffraction studies of chitosan based polyurethane bio-nanocomposites using different diisocyanates. Int J Biol Macromol. 2018;117:762–72.

    Article  CAS  PubMed  Google Scholar 

  50. Rebbouh F, Martin-Eauclaire MF, Laraba-Djebari F. Chitosan nanoparticles as a delivery platform for neurotoxin II from Androctonus australis hector scorpion venom: assessment of toxicity and immunogenicity. Acta Trop. 2020;205:105353.

    Article  CAS  PubMed  Google Scholar 

  51. Deshpande P, Dapkekar A, Oak MD, Paknikar KM, Rajwade JM. Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym. 2017;165:394–401.

    Article  CAS  PubMed  Google Scholar 

  52. Tomaz AF, de Carvalho SMS, Barbosa RC, Silva SML, Gutierrez MAS, de Lima AGB, et al. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials (Basel). 2018;11(10):2051.

    Article  Google Scholar 

  53. Torres-Rêgo M, Gláucia-Silva F, Rocha Soares KS, de Souza LBFC, Damasceno IZ, dos Santos-Silva E, et al. Biodegradable cross-linked chitosan nanoparticles improve anti-Candida and anti-biofilm activity of TistH, a peptide identified in the venom gland of the Tityus stigmurus scorpion. Mater Sci Eng C. 2019;103:109830.

    Article  Google Scholar 

  54. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal. 2015;23:619–29.

    Article  CAS  PubMed  Google Scholar 

  55. Anand T, Anbukkarasi M, Thomas PA, Geraldine PA. A comparison between plain eugenol and eugenol-loaded chitosan nanoparticles for prevention of in vitro selenite-induced cataractogenesis. J Drug Deliv Sci Technol. 2021;65:102696. https://doi.org/10.1016/j.jddst.2021.102696.

    Article  CAS  Google Scholar 

  56. Hosseini SF, Soleimani MR, Nikkhah M. Chitosan/sodium tripolyphosphate nanoparticles as efficient vehicles for antioxidant peptidic fraction from common kilka. Int J Biol Macromol. 2018;111:730–7.

    Article  CAS  PubMed  Google Scholar 

  57. Zirak N, Bolandparvaz Jahromi A, Salahinejad E. Vancomycin release kinetics from Mg–Ca silicate porous microspheres developed for controlled drug delivery. Ceram Int. 2020;46(1):508–12.

    Article  CAS  Google Scholar 

  58. Öztürk AA, Aygül A, Şenel B. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): formulation, characterization, antibacterial activity and cytotoxicity. J Drug Deliv Sci Technol. 2019;54:101240.

    Article  Google Scholar 

  59. Hassanzadeh S, Nematollahzadeh A, Mirzayi B, Fatemeh KS. Protein-based nanoparticles synthesized at a high shear rate and optimized for drug delivery applications. J Mol Liq. 2021;335:116133.

    Article  CAS  Google Scholar 

  60. Kim EU, Kim DY, Lee JS, Lee HG. Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers. Carbohydr Polym. 2021;267:118157.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil—0001) for the scholarship for J. Ziebarth, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil, proc. 429728/2018-2) and Financiadora de Projetos e Estudos (FINEP-Brazil) for partial financial support.

Author information

Authors and Affiliations

Authors

Contributions

RMM contributed to the study conception and design. Material preparation, data collection and analysis were performed by JZ. The first draft of the manuscript was written by JZ and revised by RMM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rubiana Mara Mainardes.

Ethics declarations

Conflict of interest

The authors declare to not have any known financial interest that influences the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziebarth, J., Mainardes, R.M. Preparation, characterization and in vitro evaluation of chitosan nanoparticles for the oral delivery of GLP-1 analog liraglutide. J Therm Anal Calorim 148, 2443–2455 (2023). https://doi.org/10.1007/s10973-022-11909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11909-0

Keywords

Navigation