Skip to main content
Log in

Preparation and characterization of CS/γ-PGA/PC complex nanoparticles for insulin oral delivery

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In recent years, natural polyelectrolyte complex chitosan/poly-γ-glutamic acid (CS/γ-PGA) has emerged as a promising nanocarrier delivery system for drug delivery due to its non-toxic and easily degradable properties. However, tightly bound CS/γ-PGA complexes often lead to lower encapsulation efficiency of peptide drugs without coordination of metal ions. In this investigation, we find that procyanidin (PC), as a cross-linking agent, is able to combine with CS and insulin through hydrogen bonding, which significantly improve encapsulation efficiency of insulin up to 90% in CS/γ-PGA/PC complex nanoparticles (CNPs). The results of this study demonstrate that CNPs release insulin in a pH-dependent approach and greatly reduce its enzymatic degradation in vitro. The transepithelial permeability of the CNPs is 8.1-fold higher than that of native insulin via both endocytosis and paracellular passways. Further pharmacokinetic studies reveal an oral pharmacological availability of 9.81 ± 1.32% in type I diabetic rats after intragastric administration of freeze-dried CNPs which loaded in enteric-coated capsules. In consequence, CNPs not only improve oral bioavailability of insulin but also are a promising delivery platform for insulin or other peptide/protein drugs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K et al (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109–119

    Article  Google Scholar 

  2. Steve C (2020) Rybelsus: an oral formulation of the GLP-1 agonist semaglutide. Prescriber 31(10):32–33

    Article  Google Scholar 

  3. Zhao RC, Lu ZG, Yang J, Zhang LQ, Li Y et al (2020) Drug delivery system in the treatment of diabetes mellitus. Frontiers in bioengineering and biotechnology 8:880

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cho YM, Fujita Y, Kieffer TJ (2014) Glucagon-like peptide-1: glucose homeostasis and beyond. Annu Rev Physiol 76:535–559

    Article  CAS  PubMed  Google Scholar 

  5. Brown TD, Whitehead KA, Mitragotri S (2019) Materials for oral delivery of proteins and peptides. Nat Rev Mater 5(2):127–148

    Article  Google Scholar 

  6. Khafagy ES, Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 64(6):531–539

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Qi J, Lu Y, He W, Li X et al (2014) Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine 10(1):167–176

    Article  CAS  PubMed  Google Scholar 

  8. Martins JP, Auria RD, Liu D, Fontana F, Ferreira MPA et al (2018) Engineered multifunctional albumin-decorated porous silicon nanoparticles for FcRn translocation of insulin. Small 14(27):e1800462

    Article  PubMed  Google Scholar 

  9. Lin YH, Sonaje K, Lin KM, Juang JH, Mi FL et al (2008) Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J Control Release 132(2):141–149

    Article  CAS  PubMed  Google Scholar 

  10. Fan WW, Xia DG, Zhu QL, Li XY, He SF et al (2018) Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 151(1):13–23

    Article  CAS  PubMed  Google Scholar 

  11. Wang AH, Fan WW, Yang TT, He SF, Yang YW et al (2020) Liver-target and glucose-responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv Func Mater 30(13):1–15

    Article  Google Scholar 

  12. Karamanidou T, Karidi K, Bourganis V, Kontonikola K, Kammona O et al (2015) Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur J Pharm Biopharm 97(Pt A):223–229

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad N, Amin M, Ismail I, Buang F (2016) Enhancement of oral insulin bioavailability: in vitro and in vivo assessment of nanoporous stimuli-responsive hydrogel microparticles. Expert Opin Drug Deliv 13(5):621–632

    Article  CAS  PubMed  Google Scholar 

  14. Wang A, Yang T, Fan W, Yang Y, Zhu Q et al (2019) Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Adv Healthc Mater 8(12):e1801123

    Article  PubMed  Google Scholar 

  15. Zhou YH, Chen ZX, Zhao D, Li D, He CL et al (2021) A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral exendin-4 delivery. Adv Mater 33(32):e2102044

    Article  PubMed  Google Scholar 

  16. Sun LL, Liu ZJ, Tian HK, Le ZC, Liu LX et al (2018) Scalable manufacturing of enteric encapsulation systems for site-specific oral insulin delivery. Biomacromol 20(1):528–538

    Article  Google Scholar 

  17. Hu QB, Luo YC (2018) Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 120(Pt A):775–782

    Article  CAS  PubMed  Google Scholar 

  18. Mansoor S, Kondiah PPD, Choonara YE, Pillay V (2019) Polymer-based nanoparticle strategies for insulin delivery. Polymers 11(9):1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao L, Skwarczynski M, Toth I (2019) Polyelectrolyte-based platforms for the delivery of peptides and proteins. ACS Biomater Sci Eng 5(10):4937–4950

    Article  CAS  PubMed  Google Scholar 

  20. Wang S, Zheng L, Chen W, Ji L, Zhang L et al (2021) Helically grooved gold nanoarrows: controlled fabrication, superhelix, and transcribed chiroptical switching. CCS Chemistry 3(9):2473–2484

    Article  CAS  Google Scholar 

  21. Kim K, Kim K, Ryu JH, Lee E (2015) Chitosan-catechol: a polymer with long-lasting mucoadhesive properties. Biomaterials 52(1):161–170

    CAS  PubMed  Google Scholar 

  22. Hsu LW, Ho YC, Chuang EY, Chen CT, Juang JH et al (2013) Effects of pH on molecular mechanisms of chitosan-integrin interactions and resulting tight-junction disruptions. Biomaterials 34(3):784–793

    Article  CAS  PubMed  Google Scholar 

  23. Lim YT, Shim SM, Noh YW, Lee KS, Choi DY et al (2011) Bioderived polyelectrolyte nanogels for robust antigen loading and vaccine adjuvant effects. Small 7(23):3281–3286

    Article  CAS  PubMed  Google Scholar 

  24. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF et al (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromol 8(1):146–152

    Article  CAS  Google Scholar 

  25. Nguyen HN, Wey SP, Juang JH, Sonaje K, Ho YC et al (2011) The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials 32(10):2673–2682

    Article  CAS  PubMed  Google Scholar 

  26. Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80(7):1097–1117

    Article  Google Scholar 

  27. Charlton AJ, Baxter NJ, Lilley TH, Haslam E, McDonald CJ et al (1996) Tannin interactions with a full-length human salivary proline-rich protein display a stronger affinity than with single proline-rich repeats. FEBS Lett 382(3):289–292

    Article  CAS  PubMed  Google Scholar 

  28. Luck G, Liao H, Murray NJ, Grimmer HR, Warminski EE et al (1994) Polyphenols, astringency and proline-rich proteins. Phytochemistry 37(2):357–371

    Article  CAS  PubMed  Google Scholar 

  29. Liu R, Wang LB, Huang RL, Su RX, Qi W et al (2013) Self-assembled oligomeric procyanidin-insulin hybrid nanoparticles: a novel strategy for controllable insulin delivery. Biomater Sci 1(8):834–841

    Article  CAS  PubMed  Google Scholar 

  30. Ji N, Hong Y, Gu ZB, Cheng L, Li ZF et al (2017) Binary and tertiary complex based on short-chain glucan and proanthocyanidins for oral insulin delivery. J Agric Food Chem 65(40):8866–8874

    Article  CAS  PubMed  Google Scholar 

  31. Liu R, Su RX, Liang M, Huang RL, Wang M et al (2012) Physicochemical strategies for inhibition of amyloid fibril formation: an overview of recent advances. Curr Med Chem 19(24):4157–4174

    Article  CAS  PubMed  Google Scholar 

  32. Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH et al (2010) Enteric-coated capsules filled with freeze-dried chitosan/poly(gamma-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials 31(12):3384–3394

    Article  CAS  PubMed  Google Scholar 

  33. Hentz NG, Richardson JM, Sportsman JR, Daijo J, Sittampalam GS (1997) Synthesis and characterization of insulin-fluorescein derivatives for bioanalytical applications. Anal Chem 69(24):4994–5000

    Article  CAS  PubMed  Google Scholar 

  34. Ji N, Hong Y, Gu ZB, Cheng L, Li ZF et al (2019) Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J Control Release 313:1–13

    Article  CAS  PubMed  Google Scholar 

  35. Mukhopadhyay P, Sarkar K, Chakraborty M, Bhattacharya S, Mishra R et al (2013) Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C Mater Biol Appl 33(1):376–382

    Article  CAS  PubMed  Google Scholar 

  36. Jing YJ, Huang JH, Yu XQ (2018) Preparation, characterization, and functional evaluation of proanthocyanidin-chitosan conjugate. Carbohyd Polym 194:139–145

    Article  CAS  Google Scholar 

  37. Abuhelwa AY, Foster DJR, Upton RN (2016) A quantitative review and meta-models of the variability and factors affecting oral drug absorption-part I: gastrointestinal pH. AAPS J 18(5):1309–1321

    Article  CAS  PubMed  Google Scholar 

  38. Merchant HA, Afonso-Pereira F, Rabbie SC, Youssef SA, Basit A (2015) Gastrointestinal characterisation and drug solubility determination in animals. J Pharm Pharmacol 67(5):630–639

    Article  CAS  PubMed  Google Scholar 

  39. Su YR, Yu SH, Chao AC, Wu JY, Lin YF et al (2016) Preparation and properties of pH-responsive, self-assembled colloidal nanoparticles from guanidine-containing polypeptide and chitosan for antibiotic delivery. Colloids Surf, A 494:9–20

    Article  CAS  Google Scholar 

  40. Roger N (2020) Oral delivery of biologics via the intestine. Pharmaceutics 13(1):e18

    Article  Google Scholar 

  41. Rui G, Nuno M, Victor DF (2010) Biological relevance of the interaction between procyanidins and trypsin: a multitechnique approach. J Agric Food Chem 58(22):11924–11931

    Article  Google Scholar 

Download references

Acknowledgements

We are greatly appreciating the Scientific Research Foundation of Wuxi City for the Returned Overseas Chinese Scholars for supporting this research work.

Funding

Scientific Research Foundation of Wuxi City for the Returned Overseas Chinese Scholars

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoqi Yang or Jian Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contents

This work developed a novel CS/γ-PGA/PC complex nanoparticles (CNPs) for oral insulin delivery. Procyanidin (PC), as a cross-linking agent, was able to combine with CS as well as insulin through hydrogen bond which significantly improved encapsulation efficiency of insulin. The results of in vivo studies showed that freeze-dried CNPs, achieved 9.81 ± 1.32% of pharmacological availability after oral administration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Chen, Y., Yang, Z. et al. Preparation and characterization of CS/γ-PGA/PC complex nanoparticles for insulin oral delivery. Colloid Polym Sci 301, 481–490 (2023). https://doi.org/10.1007/s00396-023-05078-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05078-1

Keywords

Navigation