Skip to main content
Log in

Heat transfer across the dynamics of water conveying alumina nanoparticles subject to Lorentz force in a rectangular cavity with various aspect ratios

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat transfer in cavities under the influence of magnetic field is very important in industry. The effect of the presence of a magnetic field on the behavior of heat transfer in closed cavities (electrical transformers) is inevitable, which is addressed in this research. The present study is about the heat transfer of water/alumina nanofluid in a rectangular cavity. The cavity has two insulated walls in front of each other, a constant temperature warm wall at an angle of zero with the horizontal and a constant temperature cold wall. A constant magnetic force with Hartmann number of Ha = 0–45 is applied, which has a zero angle with respect to the horizontal line. The Rayleigh number is Ra = 105, and the problem is solved for various length-to-width cavity aspect ratios of AR = 1–6. In this paper, the solution method uses a finite volume discretization with a pressure-based and segregated algorithm. Results revealed that for AR = 1, the temperature contours have a decreasing trend from top to bottom, as it experiences the maximum and minimum temperatures near the warm and cold walls. For this aspect ratio, the minimum dimensionless temperature occurs at the dimensionless position of X = 0.7–0.8 for various Hartmann numbers, which also coincides with the maximum Nusselt number. For the aspect ratio of AR = 2, increasing the magnetic force results in a higher Lorentz force, which opposes the buoyancy force, reducing the local Nusselt number. However, for AR = 4, increasing the magnetic force creates straight isothermal lines. For this aspect ratio, the isothermal lines are close to each other near the warm wall at two points of X = 0.3 and 0.7, with a slight temperature difference, thereby maximizing the Nusselt number. For AR = 6 and all Hartmann numbers, the Nusselt number is maximum at two points of X = 0.34 and 0.65, while the minimum is located at X = 0.2, 0.5, and 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(T_{c}\) :

Cold surface temperature/K

\(T_{\text{h}}\) :

Warm surface temperature/K

L :

Length scale/m

H :

Distance between the cold and warm walls/m

G :

Acceleration of gravity/ms2

T :

Fluid temperature/K

X, Y :

Cartesian coordinates/Dimensionless

U :

Velocity in the x-direction/Dimensionless

V :

Velocity in the y-direction/Dimensionless

\({\text{B}}_{0}\) :

Applied magnetic field/T

B :

Induced magnetic field/T

\({\text{Re}}_{{\text{m}}}\) :

Magnetic Reynolds number/Dimensionless

Ha:

Hartmann number/Dimensionless

AR:

Cavity aspect ratio

β :

Coefficient of thermal expansion/K1

P :

Pressure/Dimensionless

\(Q\) :

Heat transfer/W

H :

Convective heat transfer coefficient/Wm2 K1

A :

Heat transfer surface area/m2

L :

Distance between two insulated walls/m

k :

Thermal conduction coefficient/Wm1 K1

\(C_{\text{p}}\) :

Constant pressure specific heat/JKg1 K1

x, y :

Cartesian coordinates/m

\(U\) :

Fluid velocity in the x-direction/ms1

V :

Fluid velocity in the y-direction/ms1

J:

Electric current density/ Am2

\( F_{{\text{L}}} \) :

Lorentz force/N

Gr:

Grashof number/Dimensionless

Nu:

Grashof number/Dimensionless

Pr:

Prandtl number/Dimensionless

P :

Pressure/Pa

E :

Electric field/V

β :

Coefficient of thermal expansion/K1

\(\mu_{0}\) :

Magnetic permeability coefficient/NA−2

\(\rho\) :

Fluid density/Kgm3

\(\psi\) :

Stream function

\({\Psi }\) :

Stream function/Dimensionless

\(\sigma\) :

Fluid’s electrical conduction coefficient/Ωm1

\(\mu\) :

Dynamic viscosity/Pas1

\(\vartheta\) :

Kinematic viscosity/m2s1

\(\alpha\) :

Thermal diffusivity coefficient/m2s1

\(\theta\) :

Temperature/Dimensionless

H:

Hot

Nf:

Nanofluid

C :

Cold

F :

Fluid

P :

Nanoparticles properties

References

  1. Xiu W, Animasaun IL, Al-Mdallal QM, Alzahrani AK, Muhammad T. Dynamics of ternary-hybrid nanofluids due to dual stretching on wedge surfaces when volume of nanoparticles is small and large: forced convection of water at different temperatures. Int commun heat mass trans. 2022;137:106241. https://doi.org/10.1016/j.icheatmasstransfer.2022.106241.

    Article  CAS  Google Scholar 

  2. Makinde OD, Animasaun IL. Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J Mol Liq. 2016;221:733–43.

    Article  CAS  Google Scholar 

  3. Cao W, Animasaun IL, Yook SJ, Oladipupo VA, Ji X. Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: ternary-hybrid nanofluid. Int commun heat mass trans. 2022;135:106069. https://doi.org/10.1016/j.icheatmasstransfer.2022.106069.

    Article  CAS  Google Scholar 

  4. Animasaun IL, Shah NA, Wakif A, Mahanthesh B, Sivaraj R Koriko OK. Ratio of Momentum Diffusivity to Thermal Diffusivity: introduction, meta-analysis, and scrutinization 1st ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781003217374, 2022.

  5. Saleem S, Animasaun IL, Yook SJ, Al-Mdallal QM, Ali Shah N, Faisal M. Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: significance of thermo-migration and brownian motion. Surf Interfaces. 2022;30:101854. https://doi.org/10.1016/j.surfin.2022.101854.

    Article  Google Scholar 

  6. Safaei MR, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Phys A Statis Mech Appl. 2018;509:515–35.

    Article  CAS  Google Scholar 

  7. Akbari OA, Hassanzadeh Afrouzi H, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129:1911–22.

    Article  CAS  Google Scholar 

  8. Goodarzi M, Safaei MR, Karimipour A, Hooman K, Dahari M, Kazi SN, Sadeghinezhad E. Comparison of the finite volume and lattice Boltzmann methods for solving natural convection heat transfer problems inside cavities and enclosures. Abstr Appl anal. 2014. https://doi.org/10.1155/2014/762184.

    Article  Google Scholar 

  9. Goodarzi M, D’Orazio A, Keshavarzi A, Mousavi S, Karimipour A. Develop the nano scale method of lattice boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: pure natural convection & mixed convection. Physica A. 2018;509:210–33.

    Article  CAS  Google Scholar 

  10. Rozati SA, Montazerifar F, Akbari OA, Hoseinzadeh S, Nikkhah V, Marzban A, Abdolvand H, Goodarzi M. Natural convection heat transfer of water/Ag nanofluid inside an elliptical enclosure with different attack angles. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.7036.

    Article  Google Scholar 

  11. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Trans. 2003;46(19):3639–53.

    Article  CAS  Google Scholar 

  12. Khalifa AJN. Natural convective heat transfer coefficient–a review. Energ Conv Manag. 2001;42(4):491–504.

    Article  Google Scholar 

  13. Goldstein RJ, Ibele WE, Patankar SV, Simon TW, Kuehn TH, Strykowski PJ, Tamma KK, Heberlein JVR, Davidson JH, Bischof J, Kulacki FA, Kortshagen U, Garrick S, Srinivasan V. Heat transfer—a review of 2003 literature. Int J Heat Mass Trans. 2006;49(3–4):451–534.

    Article  Google Scholar 

  14. Favier JJ, Garandet JP, Rouzaud A, Camel D. Mass transport phenomena during solidification in microgravity; preliminary results of the first Mephisto flight experiment. J Crys Grow. 1994;140(1):237–43.

    Article  CAS  Google Scholar 

  15. Jalil JM, Al-Tae’y KA. The effect of nonuniform magnetic field on natural convection in an enclosure. Num Heat Trans Part A: Appl. 2007;51(9):899–917.

    Article  CAS  Google Scholar 

  16. Benzema M, Youb Khaled B, Seif-Eddine O. Rayleigh-Bénard MHD convection of Al2O3–water nanofluid in a square enclosure: magnetic field orientation effect. Ener Proc. 2017;139:198–203.

    Article  CAS  Google Scholar 

  17. Garbadeen ID, Sharifpur M, Slabber JM, Meyer JP. Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int commun heat mass trans. 2017;88:1–8.

    Article  CAS  Google Scholar 

  18. Pirmohammadi M, Ghassemi M. Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int commun heat mass trans. 2009;36(7):776–80.

    Article  CAS  Google Scholar 

  19. Kahveci K, Öztuna S. MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur J Mech B/Fluids. 2009;28(6):744–52.

    Article  Google Scholar 

  20. Oztop HF, Oztop M, Varol Y. Numerical simulation of magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square enclosure. Commun Non Sci Nume Sim. 2009;14(3):770–8.

    Article  Google Scholar 

  21. Sathiyamoorthy M, Chamkha A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int J Therm Sci. 2010;49(9):1856–65.

    Article  CAS  Google Scholar 

  22. Brusly Solomon A, Jv R, Rencken M, Sharifpur M, andMeyer JP,. Experimental study on the influence of the aspect ratio of square cavity on natural convection heat transfer with Al2O3/Water nanofluids. Int commun heat mass trans. 2017;88:254–61.

    Article  CAS  Google Scholar 

  23. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50(9):1748–56.

    Article  CAS  Google Scholar 

  24. Mahmoudi A, Mejri I, Abbassi MA, Omri A. Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powd Tech. 2014;256:257–71.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A. Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J Mag Mag Mat. 2014;369:69–80.

    Article  CAS  Google Scholar 

  26. Hajatzadeh Pordanjani A, Jahanbakhshi A, Ahmadi Nadooshan A, Afrand M. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Trans. 2018;121:565–78.

    Article  Google Scholar 

  27. Bhuiyana AH, Shahidul Alam Md, Alim MA. Natural convection of water-based nanofluids in a square cavity with partially heated of the bottom wall. Procedia engineering. 2017;194:435–41.

    Article  CAS  Google Scholar 

  28. Mansour MA, Bakier MAY. Influence of thermal boundary conditions on MHD natural convection in square enclosure using Cu–water nanofluid. Energ Rep. 2015;2015(1):134–44.

    Article  Google Scholar 

  29. Sheikholeslami M, Bandpy MG, Ashorynejad HR. Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity. Physica A. 2015;432:58–70.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M, Hayat T, Alsaedi A. MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Trans. 2016;96:513–24.

    Article  CAS  Google Scholar 

  31. Hussein AK, Ashorynejad HR, Sivasankaran S, Kolsi L, Shikholeslami M, Adegun IK. Modeling of MHD natural convection in a square enclosure having an adiabatic square shaped body using Lattice Boltzmann Method. Alex Eng J. 2016;55(1):203–14.

    Article  Google Scholar 

  32. Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2015;7(11):1–11.

    Article  CAS  Google Scholar 

  33. Akbari OA, Karimipour A, Toghraie Semiromi D, Safaei MR, Alipour H, Goodarzi M, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar waterAl2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comp. 2016;290:135–53.

    Article  Google Scholar 

  34. Dutta S, Pati S, Baranyi L. Numerical analysis of magnetohydrodynamic natural convection in a nanofluid filled quadrantal enclosure. Case Stud Therm Eng. 2021;28:101507.

    Article  Google Scholar 

  35. Hamida MB, Charrada K. Natural convection heatt ransfer in an enclosure filled with an ethylene glycol—copper nanofluid under magnetic fields. Numer Heat Tr A Appl. 2015;67(8):902–20.

    Article  Google Scholar 

  36. Moumni H, Welhezi H, Djebali R, Sediki E. Accurate finite volume investigation of nanofluid mixed convection in two-sided lid-driven cavity including discrete sources. Appl Math Model. 2015;39:4164–79.

    Article  Google Scholar 

  37. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  38. Maxwell J. A Treatise on Electricity and Magnetism, Oxford University Press. 1873.

  39. Zare Ghadi A, Valipour MS. Numerical study of hydro-magnetic nanofluid mixed convection in a square lid-driven cavity heated from top and cooled from bottom. Trans Phenom Nano Micro Scales. 2014;2(1):29–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Saghafian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahreini, S.H., Saghafian, M. & Akbari, O.A. Heat transfer across the dynamics of water conveying alumina nanoparticles subject to Lorentz force in a rectangular cavity with various aspect ratios. J Therm Anal Calorim 148, 2251–2264 (2023). https://doi.org/10.1007/s10973-022-11902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11902-7

Keywords

Navigation