Skip to main content
Log in

Thermo-magnetic convection analysis of magnetite ferrofluid in an arc-shaped lid-driven electronic chamber with partial heating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present paper investigates a magnetic source’s thermal and flow impacts on mixed convection conditions in a novel arc-shaped lid-driven cavity problem. The examined cavity consists of a square enclosure of length (L) with two arc-shaped vertical plates, and it is filled with Fe3O4/water ferrofluid. For this purpose, an in-house solver has been developed within the OpenFOAM® libraries based on the finite-volume method to solve the governing equations. In this regard, different parameters were implemented, which include various magnetic numbers (0 ≤ Mn ≤ 100), Richardson numbers (0.04 ≤ Ri ≤ 40), solid volume fractions (0 ≤ ϕ ≤ 0.05), and the dimensionless wide length of the arc (b* = b/L) varies from 0 to 0.15. The outcomes revealed that applying the magnetic source in the vicinity of the heater causes the appearance of a recirculation zone which boosts the diffusion phenomena. At Ri = 0.04, with the actions of the magnetic field, arc-shaped walls, and suspending magnetite nanoparticles, heat transfer enhancement can reach up to 338.35%. However, the heat transfer rate diminishes when the kelvin force is considered at Ri = 40. Finally, these outcomes are followed by developing two new correlations of the NuM versus Ri, ϕ, Mn, and b*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(b\) :

Dimensional wide length of the arc (m)

b* :

Dimensionless wide length of the arc

\({\text{Ec}}\) :

Eckert number

\({\varvec{F}}_{{\mathbf{K}}}\) :

Kelvin force (N  m3)

\(g\) :

Gravity (m  s2)

\({\text{Gr}}\) :

Grashof number

\(H\) :

Magnetic field (N m1 A1)

\(k\) :

Thermal conductivity (W m1 K1)

\(L\) :

Cavity length (m)

\(M\) :

Magnetization (N m1 A1)

\({\text{Mn}}\) :

Magnetic number

\({\text{Nu}}\) :

Nusselt number

\(p\) :

Pressure (N m2)

\(P\) :

Dimensionless pressure

Pr:

Prandtl number

\({\text{Re}}\) :

Reynolds number

\({\text{Ri}}\) :

Richardson number

\(T\) :

Temperature (K)

\(u\) :

\(v\), Dimensional velocities (m s1)

\(U, V\) :

Dimensionless velocities

\(u_{0}\) :

Uniform top wall velocity (m s1)

\(x, y\) :

Coordinates (m)

\(X, Y\) :

Dimensionless coordinates

\(\alpha\) :

Diffusivity (m2 s1)

\(\beta\) :

Thermal expansion coefficient (K1)

\(\mu\) :

Dynamic viscosity (kg m1 s1)

\(\rho\) :

Density (kg m3)

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Volume fraction

c:

Cold

f:

Fluid

L:

Local

h:

Hot

M:

Mean variable

nf:

Nanofluid

References

  1. Berrahil F, Filali A, Abid C, Benissaad S, Bessaih R, Matar O. Numerical investigation on natural convection of al2o3/water nanofluid with variable properties in an annular enclosure under magnetic field. Int Commun Heat Mass Transf. 2021;126:105408. https://doi.org/10.1016/j.icheatmasstransfer.2021.105408.

    Article  CAS  Google Scholar 

  2. Korei Z, Louali K. Prediction of hybrid nanofluids behavior and entropy generation during the cooling of an electronic chip using the Lagrangian–Eulerian approach. Heat Transf. 2022;51:6815–35. https://doi.org/10.1002/htj.22625.

    Article  Google Scholar 

  3. Selimefendigil F, Öztop HF. Thermal management for conjugate heat transfer of curved solid conductive panel coupled with different cooling systems using non-newtonian power law nanofluid applicable to photovoltaic panel systems. Int J Therm Sci. 2022;173:107390. https://doi.org/10.1016/j.ijthermalsci.2021.107390.

    Article  Google Scholar 

  4. Sheikholeslami M, Barzegar Gerdroodbary M, Mousavi SV, Ganji DD, Moradi R. Heat transfer enhancement of ferrofluid inside an 90° elbow channel by non-uniform magnetic field. J Magn Magn Mater. 2018;460:302–11. https://doi.org/10.1016/j.jmmm.2018.03.070.

    Article  CAS  Google Scholar 

  5. Korei Z, Benissaad S. Turbulent forced convection and entropy analysis of a nanofluid through a 3D 90° elbow using a two-phase approach. Heat Transf. 2021;50:8173–203. https://doi.org/10.1002/htj.22272.

    Article  Google Scholar 

  6. Siddiqui AA, Turkyilmazoglu M. Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int Commun Heat Mass Transf. 2020;113:104499. https://doi.org/10.1016/j.icheatmasstransfer.2020.104499.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96. https://doi.org/10.1016/j.molliq.2018.12.104.

    Article  CAS  Google Scholar 

  8. Soltanipour H. Numerical analysis of two-phase ferrofluid forced convection in an annulus subjected to magnetic sources. Appl Therm Eng. 2021;196:117278. https://doi.org/10.1016/j.applthermaleng.2021.117278.

    Article  CAS  Google Scholar 

  9. Mobadersani F, Rezavand HA. Investigation of FHD effects on heat transfer in a differentially heated cavity partially filled with porous medium utilizing Buongiorno’s model. Eur Phys J Plus. 2021;136:1–25. https://doi.org/10.1140/epjp/s13360-021-01679-3.

    Article  CAS  Google Scholar 

  10. Ghorbani B, Ebrahimi S, Vijayaraghavan K. CFD modeling and sensitivity analysis of heat transfer enhancement of a ferrofluid flow in the presence of a magnetic field. Int J Heat Mass Transf. 2018;127:544–52. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.050.

    Article  CAS  Google Scholar 

  11. Bezaatpour M, Rostamzadeh H. Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field. Appl Therm Eng. 2020;164:114462. https://doi.org/10.1016/j.applthermaleng.2019.114462.

    Article  CAS  Google Scholar 

  12. Shafii MB, Keshavarz M. Experimental study of internal forced convection of ferrofluid flow in non-magnetizable/magnetizable porous media. Exp Therm Fluid Sci. 2018;96:441–50. https://doi.org/10.1016/j.expthermflusci.2018.03.036.

    Article  CAS  Google Scholar 

  13. Selimefendigil F, Oztop H, Sheremet M, Abu-Hamdeh N. Forced convection of Fe3O4-water nanofluid in a bifurcating channel under the effect of variable magnetic field. Energies. 2019;12:666. https://doi.org/10.3390/en12040666.

    Article  CAS  Google Scholar 

  14. Nessab W, Kahalerras H, Fersadou B, Hammoudi D. Numerical investigation of ferrofluid jet flow and convective heat transfer under the influence of magnetic sources. Appl Therm Eng. 2019;150:271–84. https://doi.org/10.1016/j.applthermaleng.2018.12.164.

    Article  CAS  Google Scholar 

  15. Shakiba A, Vahedi K. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J Magn Magn Mater. 2016;402:131–42. https://doi.org/10.1016/j.jmmm.2015.11.039.

    Article  CAS  Google Scholar 

  16. Fadaei F, Shahrokhi M, Molaei Dehkordi A, Abbasi Z. Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field. J Magn Magn Mater. 2017;429:314–23. https://doi.org/10.1016/j.jmmm.2017.01.046.

    Article  CAS  Google Scholar 

  17. Asadi A, Hossein Nezhad A, Sarhaddi F, Keykha T. Laminar ferrofluid heat transfer in presence of non-uniform magnetic field in a channel with sinusoidal wall: a numerical study. J Magn Magn Mater. 2019;471:56–63. https://doi.org/10.1016/j.jmmm.2018.09.045.

    Article  CAS  Google Scholar 

  18. Soltanipour H, Gharegöz A, Oskooee MB. Numerical study of magnetic field effect on the ferrofluid forced convection and entropy generation in a curved pipe. J Braz Soc Mech Sci Eng. 2020. https://doi.org/10.1007/s40430-020-2218-5.

    Article  Google Scholar 

  19. Moghadam HK, Baghbani SS, Babazadeh H. Study of thermal performance of a ferrofluid with multivariable dependence viscosity within a wavy duct with external magnetic force. J Therm Anal Calorim. 2020;143:3849–66. https://doi.org/10.1007/s10973-020-09324-4.

    Article  CAS  Google Scholar 

  20. Malmir-Chegini Y, Amanifard N. Heat transfer enhancement inside semi-insulated horizontal pipe by controlling the secondary flow of oil-based ferro-fluid in the presence of non-uniform magnetic field: a general correlation for the Nusselt number. Appl Therm Eng. 2019;159:113839. https://doi.org/10.1016/j.applthermaleng.2019.113839.

    Article  Google Scholar 

  21. Mehrez Z, Cafsi AE. Heat exchange enhancement of ferrofluid flow into rectangular channel in the presence of a magnetic field. Appl Math Comput. 2021;391:125634. https://doi.org/10.1016/j.amc.2020.125634.

    Article  Google Scholar 

  22. Bezaatpour M, Rostamzadeh H. Design and evaluation of flat plate solar collector equipped with nanofluid, rotary tube, and magnetic field inducer in a cold region. Renew Energy. 2021;170:574–86. https://doi.org/10.1016/j.renene.2021.02.001.

    Article  CAS  Google Scholar 

  23. Bezaatpour M, Rostamzadeh H, Bezaatpour J, Ebadollahi M. Magnetic-induced nanoparticles and rotary tubes for energetic and exergetic performance improvement of compact heat exchangers. Powder Technol. 2021;377:396–414. https://doi.org/10.1016/j.powtec.2020.09.010.

    Article  CAS  Google Scholar 

  24. Hosseinizadeh SE, Majidi S, Goharkhah M, Jahangiri A. Energy and exergy analysis of ferrofluid flow in a triple tube heat exchanger under the influence of an external magnetic field. Therm Sci Eng Prog. 2021;25:101019. https://doi.org/10.1016/j.tsep.2021.101019.

    Article  CAS  Google Scholar 

  25. Punith Gowda RJ, Naveen Kumar R, Prasannakumara BC, Nagaraja B, Gireesha BJ. Exploring magnetic dipole contribution on ferromagnetic nanofluid flow over a stretching sheet: an application of Stefan Blowing. J Mol Liq. 2021;335:116215. https://doi.org/10.1016/j.molliq.2021.116215.

    Article  CAS  Google Scholar 

  26. Kumar RN, Gowda RJ, Abusorrah AM, Mahrous YM, Abu-Hamdeh NH, Issakhov A, et al. Impact of magnetic dipole on ferromagnetic hybrid nanofluid flow over a stretching cylinder. Phys Scr. 2021;96:045215. https://doi.org/10.1088/1402-4896/abe324.

    Article  CAS  Google Scholar 

  27. Naveen Kumar R, Jyothi AM, Alhumade H, Punith Gowda RJ, Alam MM, Ahmad I, et al. Impact of magnetic dipole on thermophoretic particle deposition in the flow of Maxwell fluid over a stretching sheet. J Mol Liq. 2021;334:116494. https://doi.org/10.1016/j.molliq.2021.116494.

    Article  CAS  Google Scholar 

  28. Naveen Kumar R, Suresha S, Gowda RJ, Megalamani SB, Prasannakumara BC. Exploring the impact of magnetic dipole on the radiative nanofluid flow over a stretching sheet by means of KKL model. Pramana. 2021. https://doi.org/10.1007/s12043-021-02212-y.

    Article  Google Scholar 

  29. Punith Gowda RJ, Naveen Kumar R, Jyothi AM, Prasannakumara BC, Nisar KS. KKL correlation for simulation of nanofluid flow over a stretching sheet considering magnetic dipole and chemical reaction. ZAMM J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik. 2021. https://doi.org/10.1002/zamm.202000372.

    Article  Google Scholar 

  30. Naveen Kumar R, Punith Gowda RJ, Prasannakumara BC, Raju CSK. Stefan blowing effect on nanofluid flow over a stretching sheet in the presence of a magnetic dipole. In: Micro and nanofluid convection with magnetic field effects for heat and mass transfer applications using MATLAB. 2022. https://doi.org/10.1016/b978-0-12-823140-1.00005-1.

  31. Mousavi SM, Darzi AA, Li M. Modelling and simulation of flow and heat transfer of ferrofluid under magnetic field of neodymium block magnet. Appl Math Model. 2022;103:238–60. https://doi.org/10.1016/j.apm.2021.10.019.

    Article  Google Scholar 

  32. Izadi M, Oztop HF, Sheremet MA, Mehryan SAM, Abu-Hamdeh N. Coupled FHD–MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media. Numer Heat Transf Part A Appl. 2019;76:479–98. https://doi.org/10.1080/10407782.2019.1637626.

    Article  Google Scholar 

  33. Ghalambaz M, Sabour M, Sazgara S, Pop I, Trâmbiţaş R. Insight into the dynamics of ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) nanofluids inside a hexagonal cavity in the presence of a non-uniform magnetic field. J Magn Magn Mater. 2020;497:166024. https://doi.org/10.1016/j.jmmm.2019.166024.

    Article  CAS  Google Scholar 

  34. Maroofiazar R, Eshkalak NJ. Numerical investigation of mixed convection of NON-NEWTONIAN ferrofluids in a concentric annulus: combined FHD-MHD effects. Heat Transf Res. 2020;51:459–779. https://doi.org/10.1615/heattransres.2020032779.

    Article  Google Scholar 

  35. Pourhoseini SH, Ramezani-Aval H, Naghizadeh N. FHD and MHD effects of Fe3o4-water magnetic nanofluid on the enhancement of overall heat transfer coefficient of a heat exchanger. Phys Scr. 2020;95:045705. https://doi.org/10.1088/1402-4896/ab6eb6.

    Article  CAS  Google Scholar 

  36. Öztop HF, Sakhrieh A, Abu-Nada E, Al-Salem K. Mixed convection of MHD flow in nanofluid filled and partially heated wavy walled lid-driven enclosure. Int Commun Heat Mass Transf. 2017;86:42–51. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.011.

    Article  Google Scholar 

  37. Çolak E, Öztop HF, Ekici Ö. MHD mixed convection in a chamfered lid-driven cavity with partial heating. Int J Heat Mass Transf. 2020;156:119901. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119901.

    Article  Google Scholar 

  38. Korei Z, Benissaad S, Berrahil F, Filali A. MHD mixed convection and irreversibility analysis of hybrid nanofluids in a partially heated lid-driven cavity chamfered from the bottom side. Int Commun Heat Mass Transf. 2022;132:105895. https://doi.org/10.1016/j.icheatmasstransfer.2022.105895.

    Article  CAS  Google Scholar 

  39. Hussain S, Öztop HF. Impact of inclined magnetic field and power law fluid on double diffusive mixed convection in lid-driven curvilinear cavity. Int Commun Heat Mass Transf. 2021;127:105549. https://doi.org/10.1016/j.icheatmasstransfer.2021.105549.

    Article  Google Scholar 

  40. Tayebi T, Chamkha AJ. MHD buoyancy-driven flow in a nanoliquid filled-square enclosure divided by a solid conductive wall. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6598.

    Article  Google Scholar 

  41. Tayebi T, Sattar Dogonchi A, Karimi N, Ge-JiLe H, Chamkha AJ, Elmasry Y. Thermo-economic and entropy generation analyses of magnetic natural convective flow in a nanofluid-filled annular enclosure fitted with fins. Sustain Energy Technol Assess. 2021;46:101274. https://doi.org/10.1016/j.seta.2021.101274.

    Article  Google Scholar 

  42. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502. https://doi.org/10.1016/j.ijmecsci.2018.01.001.

    Article  Google Scholar 

  43. Zidan AM, Tayebi T, Sattar Dogonchi A, Chamkha AJ, Ben Hamida MB, Galal AM. Entropy-based analysis and economic scrutiny of Magneto thermal natural convection enhancement in a nanofluid-filled porous trapezium-shaped cavity having localized baffles. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2084651.

    Article  Google Scholar 

  44. Tayebi T, Dogonchi AS, Chamkha AJ, Ben Hamida MB, El-Sapa S, Galal AM. Micropolar nanofluid thermal free convection and entropy generation through an inclined I-shaped enclosure with two hot cylinders. Case Stud Therm Eng. 2022;31:101813. https://doi.org/10.1016/j.csite.2022.101813.

    Article  Google Scholar 

  45. Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv Powder Technol. 2017;28:244–55. https://doi.org/10.1016/j.apt.2016.09.030.

    Article  CAS  Google Scholar 

  46. Benos LT, Karvelas EG, Sarris IE. A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-crosser model. Int J Heat Mass Transf. 2019;135:548–60. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.148.

    Article  CAS  Google Scholar 

  47. Sheremet MA, Oztop HF, Pop I, Al-Salem K. MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater. Int J Heat Mass Transf. 2016;103:955–64. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.006.

    Article  CAS  Google Scholar 

  48. Hussain S, Tayebi T, Armaghani T, Rashad AM, Nabwey HA. Conjugate natural convection of non-newtonian hybrid nanofluid in wavy-shaped enclosure. Appl Math Mech. 2022;43:447–66. https://doi.org/10.1007/s10483-022-2837-6.

    Article  Google Scholar 

  49. Tayebi T, Chamkha AJ. Effects of various configurations of an inserted corrugated conductive cylinder on MHD natural convection in a hybrid nanofluid-filled square domain. J Therm Anal Calorim. 2020;143:1399–411. https://doi.org/10.1007/s10973-020-10206-y.

    Article  CAS  Google Scholar 

  50. Tayebi T, Chamkha AJ. Magnetohydrodynamic natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. J Therm Sci Eng Appl. 2019. https://doi.org/10.1115/1.4044857.

    Article  Google Scholar 

  51. Dogonchi AS, Tayebi T, Karimi N, Chamkha AJ, Alhumade H. Thermal-natural convection and entropy production behavior of hybrid nanoliquid flow under the effects of magnetic field through a porous wavy cavity embodies three circular cylinders. J Taiwan Inst Chem Eng. 2021;124:162–73. https://doi.org/10.1016/j.jtice.2021.04.033.

    Article  CAS  Google Scholar 

  52. Sheikholeslami M, Rashidi MM. Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus. 2015. https://doi.org/10.1140/epjp/i2015-15115-4.

    Article  Google Scholar 

  53. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91. https://doi.org/10.1021/i160003a005.

    Article  CAS  Google Scholar 

  54. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–571. https://doi.org/10.1063/1.1700493.

    Article  CAS  Google Scholar 

  55. Moukalled FH, Mangani L, Darwish M. The finite volume method in computational fluid dynamics: an advanced introduction with openfoam® and MATLAB®. Springer, Switzerland (2016).

  56. Patankar SV. Numerical heat transfer and fluid flow. Cambridge: Hemisphere Publishing Co.; 1980.

    Google Scholar 

  57. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–56. https://doi.org/10.1016/j.ijthermalsci.2011.04.010.

    Article  CAS  Google Scholar 

  58. Pordanjani AH, Jahanbakhshi A, Ahmadi Nadooshan A, Afrand M. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transf. 2018;121:565–78. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.019.

    Article  CAS  Google Scholar 

  59. Ashorynejad HR, Shahriari A. MHD natural convection of hybrid nanofluid in an open wavy cavity. Results Phys. 2018;9:440–55. https://doi.org/10.1016/j.rinp.2018.02.045.

    Article  Google Scholar 

  60. Du R, Gokulavani P, Muthtamilselvan M, Al-Amri F, Abdalla B. Influence of the Lorentz force on the ventilation cavity having a centrally placed heated baffle filled with the Cu–Al2O3–H2O hybrid nanofluid. Int Commun Heat Mass Transf. 2020;116:1676. https://doi.org/10.1016/j.icheatmasstransfer.2020.104676.

    Article  CAS  Google Scholar 

  61. Larimi MM, Ghanaat A, Ramiar A, Ranjbar AA. Forced convection heat transfer in a channel under the influence of various non-uniform transverse magnetic field arrangements. Int J Mech Sci. 2016;118:101–12. https://doi.org/10.1016/j.ijmecsci.2016.09.023.

    Article  Google Scholar 

  62. Tzirtzilakis EE, Xenos MA. Biomagnetic fluid flow in a driven cavity. Meccanica. 2012;48:187–200. https://doi.org/10.1007/s11012-012-9593-7.

    Article  Google Scholar 

  63. Talebi F, Mahmoudi AH, Shahi M. Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int Commun Heat Mass Transf. 2010;37:79–90. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Korei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korei, Z., Berrahil, F., Filali, A. et al. Thermo-magnetic convection analysis of magnetite ferrofluid in an arc-shaped lid-driven electronic chamber with partial heating. J Therm Anal Calorim 148, 2585–2604 (2023). https://doi.org/10.1007/s10973-022-11894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11894-4

Keywords

Navigation