Skip to main content
Log in

Nucleation and thermal stability enhancements in poly(ethylene terephthalate) composites influenced by graphene oxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The low crystallization rate and long molding time of poly(ethylene terephthalate) (PET) restricts its application in the field of engineering plastics. PET/graphene oxide (GO) composites were synthesized through in situ polymerization method with dimethyl terephthalate (DMT), ethylene glycol (EG) as reactants and GO as filler in order to overcome the above shortcomings. Influence of GO on the crystallization performance of PET was investigated. It was revealed GO raised the crystallization temperature and crystallization rate of PET, demonstrating the excellent nucleation capability of GO. The mechanism of PET nucleation induced by GO was investigated by Avrami equation and Hoffman-Lauritzen theory. It was obvious the crystallization behavior of PET was improved by reducing the free energy of nucleation and the fold surface free energy of PET caused by GO. Moreover, the non-isothermal kinetics of thermal decomposition of PET and PET/GO composites were studied by Friedman method. It was obvious that all of PET and PET/GO composites exhibited a fine thermal stability with no significant mass loss observed up to 370 °C (< 0.5%). The addition of GO improved the thermal stability of PET through raising the apparent activation energy, inhibiting the escape of volatile products and absorbing the degradation products in PET thermal decomposition procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Waskiewicz S, Langer E. Synthesis of new oligoesterdiols based on waste poly(ethylene terephthalate) and dimerized fatty acid. Polymer. 2021;227:123832. https://doi.org/10.1016/j.polymer.2021.123832.

    Article  CAS  Google Scholar 

  2. Ge Y, Liu T. Numerical simulation on bubble wall shape evolution and uniformity in poly(ethylene terephthalate) foaming process. Chem Eng Sci. 2021;230:116213. https://doi.org/10.1016/j.ces.2020.116213.

    Article  CAS  Google Scholar 

  3. Huang WT, He GJ, Tang WD, Zou XL, Yin XC. A facile approach to realize simultaneously chain extension and crystallization promotion of poly (ethylene terephthalate). Polym Degrad Stab. 2021;190:109644. https://doi.org/10.1016/j.polymdegradstab.2021.109644.

    Article  CAS  Google Scholar 

  4. Chen Y, Yu P, Ren G, Zhang Q, Han Q, Teng H. Interpenetration of polyethylene terephthalate with biocidal quaternary ammonium/N–chloramine polysiloxane in supercritical CO2. Ind Eng Chem Res. 2017;56:9560–8. https://doi.org/10.1021/acs.iecr.7b02544.

    Article  CAS  Google Scholar 

  5. Dhaka V, Singh S, Anil AG, Naik TSSK, Garg S, Samuel J, Kumar M, Ramamurthy PC, Singh J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ Chem Lett. 2022. https://doi.org/10.1007/s10311-021-01384-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. He W, Guo Y, Shen R, Liu Q, Liu J. Enhancement of filtration performance of polyester (PET) filters by compositing with schorl powder. Powder Technol. 2019;342:321–7. https://doi.org/10.1016/j.powtec.2018.09.046.

    Article  CAS  Google Scholar 

  7. Yeh GSY, Geil PH. Crystallization of polyethylene terephthalate from the glassy amorphous state. J Macromol Sci Part B. 1967;1:235–49. https://doi.org/10.1080/00222346708212777.

    Article  CAS  Google Scholar 

  8. Agrawal H, Awasthi K, Saraswat VK. Non-isothermal crystallization kinetics of TiO2 nanoparticle-filled poly(ethylene terephthalate) with structural and chemical properties. Polym Bull. 2014;71:1539–55. https://doi.org/10.1007/s00289-014-1140-3.

    Article  CAS  Google Scholar 

  9. Avolio R, Gentile G, Avella M, Carfagna C, Errico ME. Polymer–filler interactions in PET/CaCO3 nanocomposites: chain ordering at the interface and physical properties. Eur Polym J. 2013;49:419–27. https://doi.org/10.1016/j.eurpolymj.2012.10.008.

    Article  CAS  Google Scholar 

  10. Wang G, Chen Y. Isothermal crystallization and spherulite morphology of poly(ethylene terephthalate)/Na+-MMT nanocomposites prepared through solid-state mechanochemical method. J Therm Anal Calorim. 2018;131:2611–24. https://doi.org/10.1007/s10973-017-6857-4.

    Article  CAS  Google Scholar 

  11. Szymczyk A, Paszkiewicz S, Pawelec I, Lisiecki S, Jotko M, Špitalský Z, MosnáIek J, RosBaniec Z. Oxygen barrier properties and melt crystallization behavior of poly(ethylene terephthalate)/graphene oxide nanocomposites. J Nanomater. 2015;2015:382610. https://doi.org/10.1155/2015/382610.

    Article  CAS  Google Scholar 

  12. Zhu Z, Wang R, Dong Z, Huang X, Zhang D. Morphology, crystallization, and mechanical properties of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites. J Appl Polym Sci. 2011;120:3460–8. https://doi.org/10.1002/app.33438.

    Article  CAS  Google Scholar 

  13. Yang B, He Z, Li L, Sheng X, Hao Z. Effects of β-nucleating agent and graphene oxide on the crystallization and polymorphic composition of isotactic polypropylene/graphene oxide composites for bridge pavement. J Polym Res. 2019;26:1–9. https://doi.org/10.1007/s10965-018-1622-3.

    Article  CAS  Google Scholar 

  14. Zhang S, Liu P, Zhao X, Xu J. Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. J Polym Res. 2018;25:65. https://doi.org/10.1007/s10965-018-1471-0.

    Article  CAS  Google Scholar 

  15. Liu Y, Li C, Fan S, Song X. Effect of PMMA removal methods on opto-mechanical behaviors of optical fiber resonant sensor with graphene diaphragm. Photonic Sens. 2022;12:140–51. https://doi.org/10.1007/s13320-021-0636-3.

    Article  CAS  Google Scholar 

  16. Dai H, Li R, Su S, Cui Y, Lin Y, Zhang L, Zhu X. Preparation and characterization of PANI/MWCNT/RGO ternary composites as electrode materials for supercapacitors. J Electron Mater. 2022;51:1409–20. https://doi.org/10.1007/s11664-021-09421-6.

    Article  CAS  Google Scholar 

  17. Matveenko VP, Tashkinov MA. Modeling the influence of structure morphology on the physical and mechanical properties of nanocomposites based on a polymer matrix and graphene oxide. Mech Solids. 2020;55:316–23. https://doi.org/10.3103/S0025654420030097.

    Article  Google Scholar 

  18. Salavagione H, Sherwood J, De B, Budarin V, Ellis G, Clark J, Shuttleworth P. Identification of high performance solvents for the sustainable processing of graphene. Green Chem. 2017;19:2550–60. https://doi.org/10.1039/C7GC00112F.

    Article  CAS  Google Scholar 

  19. Shiu SC, Tsai JL. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos B Eng. 2014;56:691–7. https://doi.org/10.1016/j.compositesb.2013.09.007.

    Article  CAS  Google Scholar 

  20. Chae HR, Lee J, Lee CH, Kim IC, Park PK. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J Membr Sci. 2015;483:128–35. https://doi.org/10.1016/j.memsci.2015.02.045.

    Article  CAS  Google Scholar 

  21. Aoyama S, Park YT, Ougizawa T, Macosko CW. Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene versus carbon nanotubes. Polymer. 2014;55:2077–85. https://doi.org/10.1016/j.polymer.2014.02.055.

    Article  CAS  Google Scholar 

  22. Broda J, Baczek M, Fabia J, Binias D, Fryczkowski R. Nucleating agents based on graphene and graphene oxide for crystallization of the b-form of isotactic polypropylene. J Mater Sci. 2020;55:1436–50. https://doi.org/10.1007/s10853-019-04045-y.

    Article  CAS  Google Scholar 

  23. Qian P, Zhang Y, Mao H, Wang H, Shi H. Nucleation and mechanical enhancements in poly(butylene terephthalate) nanocomposites influenced by functionalized graphene oxide. SN Appl Sci. 2019;1:443. https://doi.org/10.1007/s42452-019-0466-8.

    Article  CAS  Google Scholar 

  24. Li J, Yang H, Wang H, Zhang J, Liu S, Liu X, Liu W, Zhang L, Niu M, Chen J. Toughness enhancement in polyactide nanocomposites with swallow-tailed graphene oxide. Polym Sci Ser B. 2020;62:560–71. https://doi.org/10.1134/S1560090420050085.

    Article  Google Scholar 

  25. Abuibaid AZA, Iqbal MZ. Thermally reduced graphene/polyethylene nanocomposites: effects of graphene on isothermal and nonisothermal crystallization of polyethylene. Heliyon. 2020;6:e03589. https://doi.org/10.1016/j.heliyon.2020.e03589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berkowitz S. Viscosity-molecular weight ralationships for poly(ethylene terephthalate) inhexafluoroisopropanol–pentafluorophenol using SEC-LALLS. J Appl Polym Sci. 1984;29:4353–61. https://doi.org/10.1002/app.1984.070291264.

    Article  CAS  Google Scholar 

  27. Pinto GM, Silva GC, Fechine GJM. Effect of exfoliation medium on the morphology of multi-layer graphene oxide and its importance for poly(ethylene terephthalate) based nanocomposites. Polym Test. 2020;90:106742. https://doi.org/10.1016/j.polymertesting.2020.106742.

    Article  CAS  Google Scholar 

  28. de Oliveira CFP, Munoz PAR, dos Santos MCC, Medeiros GS, Simionato A, Nagaoka DA, de Souza EAT, Domingues SH, Fechine GJM. Tuning of surface properties of poly (vinyl alcohol)/graphene oxide nanocomposites. Polym Compos. 2019;40:E312–20. https://doi.org/10.1002/pc.24659.

    Article  CAS  Google Scholar 

  29. Abbas SS, Rees GJ, Kelly NL, Dancer CEJ, Hanna JV, McNally T. Facile silane functionalization of graphene oxide. Nanoscale. 2018;10:16231–42. https://doi.org/10.1039/c8nr04781b.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97:187401. https://doi.org/10.1103/PhysRevLett.97.187401.

    Article  CAS  PubMed  Google Scholar 

  31. Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater. 2010;22:4467–72. https://doi.org/10.1002/adma.201000732.

    Article  CAS  PubMed  Google Scholar 

  32. Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W, Geworski A, Dotzer C, Rockert M, Xiao J, Papp C, Lytken O. Wet chemical synthesis of graphene. Adv Mater. 2013;25(26):3583–7. https://doi.org/10.1002/adma.201300155.

    Article  CAS  PubMed  Google Scholar 

  33. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN. Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol). J Appl Polym Sci. 2008;110:1739–49. https://doi.org/10.1002/app.28818.

    Article  CAS  Google Scholar 

  34. Chen K, Wilkie CA, Vyazovkin S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene–clay systems. J Phys Chem B. 2007;111:12685–92. https://doi.org/10.1021/jp0759168.

    Article  CAS  PubMed  Google Scholar 

  35. Awad SA, Khalaf EM. Improvement of the chemical, thermal, mechanical and morphological properties of polyethylene terephthalate–graphene particle composites. Bull Mater Sci. 2018;41:67. https://doi.org/10.1007/s12034-018-1587-1.

    Article  CAS  Google Scholar 

  36. Gao W, Ding L, Zhu Y. Effect of surface modification on the dispersion, thermal stability and crystallization properties of PET/CaCO3 nanocomposites. Tenside Surf Deterg. 2017;54:230–7. https://doi.org/10.3139/113.110490.

    Article  CAS  Google Scholar 

  37. Alghyamah AA, Elnour AY, Shaikh H, Haider S, Poulose AM, Al-Zahrani SM, Almasry WA, Park SY. Biochar/polypropylene composites: a study on the effect of pyrolysis temperature on crystallization kinetics, crystalline structure, and thermal stability. J King Saud Univ Sci. 2021;33:101409. https://doi.org/10.1016/j.jksus.2021.101409.

    Article  Google Scholar 

  38. Chowreddy RR, Nord-Varhaug K, Rapp F. Recycled polyethylene terephthalate/carbon nanotube composites with improved processability and performance. J Mater Sci. 2018;53:7017–29. https://doi.org/10.1007/s10853-018-2014-0.

    Article  CAS  Google Scholar 

  39. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Isothermal and non-isothermal crystallization kinetics of branched and partially crosslinked PET DSC study. J Therm Anal Calorim. 2006;84:85–9. https://doi.org/10.1007/s10973-005-7366-4.

    Article  CAS  Google Scholar 

  40. Gaonkar AA, Murudkar VV, Deshpande VD. Comparison of crystallization kinetics of polyethylene terephthalate (PET) and reorganized PET. Thermochim Acta. 2020;683:178472. https://doi.org/10.1016/j.tca.2019.178472.

    Article  CAS  Google Scholar 

  41. Lu XF, Hay JN. Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer. 2001;42:9423–31. https://doi.org/10.1016/S0032-3861(01)00502-X.

    Article  CAS  Google Scholar 

  42. Hoffman JD. Thermodynamic driving force in nucleation and growth processes. J Chem Phys. 1958;29:1192–3. https://doi.org/10.1063/1.1744688.

    Article  CAS  Google Scholar 

  43. Dong S, Jia Y, Xu X, Luo J, Han J, Sun X. Crystallization and properties of poly(ethylene terephthalate)/layered double hydroxide nanocomposites. J Colloid Interface Sci. 2019;539:54–64. https://doi.org/10.1016/j.jcis.2018.12.030.

    Article  CAS  PubMed  Google Scholar 

  44. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12. https://doi.org/10.1063/1.1750380.

    Article  CAS  Google Scholar 

  45. Clark EJ, Hoffman JD. Regime III crystallization in polypropylene. Macromolecules. 1984;17:878–85. https://doi.org/10.1021/ma00134a058.

    Article  CAS  Google Scholar 

  46. Yu B, Wang X, Qian X, Xing W, Yang H, Ma L, Lin Y, Jiang S, Song L, Hu Y, Lo SM. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 2014;4:31782–94. https://doi.org/10.1039/c3ra45945d.

    Article  CAS  Google Scholar 

  47. Xing S, Li R, Si J, Tang P. In situ polymerization of poly(styrene-alt-maleic anhydride)/organic montmorillonite nanocomposites and their ionomers as crystallization nucleating agents for poly(ethylene terephthalate). J Ind Eng Chem. 2016;38:167–74. https://doi.org/10.1016/j.jiec.2016.04.020.

    Article  CAS  Google Scholar 

  48. Sousa JC, Costa ARM, Lima JC, Arruda SA, Almeida YMB. Crystallization kinetics modeling, thermal properties and biodegradability of poly (ε-caprolactone)/niobium pentoxide and alumina compounds. Polym Bull. 2021;78:7337–53. https://doi.org/10.1007/s00289-020-03468-x.

    Article  CAS  Google Scholar 

  49. Fukushima K, Tabuani D, Abbate C, Arena M, Rizzarelli P. Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. Eur Polym J. 2011;47:139–52. https://doi.org/10.1016/j.eurpolymj.2010.10.027.

    Article  CAS  Google Scholar 

  50. Das P, Tiwari P. Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochim Acta. 2019;679:178340. https://doi.org/10.1016/j.tca.2019.178340.

    Article  CAS  Google Scholar 

  51. Talla ASF, Erchiqui F, Godard F, Kocaefe D. An evaluation of the thermal degradation kinetics of novel melt processed PET–hemp fiber composites. J Therm Anal Calorim. 2016;126:1387–96. https://doi.org/10.1007/s10973-016-5628-y.

    Article  CAS  Google Scholar 

  52. Neves RM, Ornaghi HL Jr, Ornaghi FG, Amico SC, Zattera AJ. Degradation kinetics and lifetime prediction for polystyrene/nanocellulose nanocomposites. J Therm Anal Calorim. 2022;147:879–90. https://doi.org/10.1007/s10973-020-10316-7.

    Article  CAS  Google Scholar 

  53. Fakhrpour G, Bagheri S, Golriz M, Shekari M, Omrani A, Shameli A. Degradation kinetics of PET/PEN blend nanocomposites using differential isoconversional and differential master plot approaches. J Therm Anal Calorim. 2016;124:917–24. https://doi.org/10.1007/s10973-015-5024-z.

    Article  CAS  Google Scholar 

  54. Ghanbari A, Heuzey MC, Carreau PJ, Ton MT. A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation. Polymer. 2013;54:1361–9. https://doi.org/10.1016/j.polymer.2012.12.066.

    Article  CAS  Google Scholar 

  55. Wang Y, Wang Z, Zhu J, Li H, ZhangYu ZX. A comparative study on the reinforcement effect of polyethylene terephthalate composites by inclusion of two types of functionalized graphene, Colloid Polym. Sci. 2021;299:1853–61. https://doi.org/10.1007/s00396-021-04909-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52173050), Science and Technology Planning Project in Panzhihua City, China (No. 2021ZD-G-10), and Sichuan Province Key Laboratory of Higher Education Institutions for Comprehensive Development and Utilization of Industrial Solid Waste in Civil Engineering, China (No. SC_FQWLY-2021-Y-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng Li, Zhenyu Wu or Minggang Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Li, Y., Zhao, J. et al. Nucleation and thermal stability enhancements in poly(ethylene terephthalate) composites influenced by graphene oxide. J Therm Anal Calorim 148, 2401–2415 (2023). https://doi.org/10.1007/s10973-022-11873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11873-9

Keywords

Navigation