Skip to main content
Log in

The investigation of energy and exergy analyses in compression ignition engines using diesel/biodiesel fuel blends-a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biodiesel is used as an alternative fuel or fuel additive in diesel engines. In the literature, engine performance, exhaust emission, and thermodynamic analyses have been conducted using biodiesel, diesel–biodiesel, diesel–biodiesel–alcohol, and diesel–biodiesel–nanoparticle fuel blends as alternative fuels in diesel engines. The present research examined and discussed only studies related to energy and exergy analyses. Using energy efficiency, exergy efficiency, and destroyed exergy values, a distinct perspective has been given to using biodiesel as an alternative fuel. While a certain decrease occurs in engine power with biodiesel, an improvement is observed in engine emissions. Hence, the exergy efficiency of biodiesel fuel blends is lower than pure diesel fuel. Some studies in the literature have reported exergy destruction due to the use of biodiesel to be 5–15% higher than pure diesel fuel.The exergy efficiency of some biodiesel types is very low compared to diesel fuel. When nanoparticles such as Al2O3 and TiO2 are added to diesel–biodiesel fuel blends, exergy destruction in the engine decreases and, thus, the useful work increases. Whereas nanoparticles ensure a 2–5% power increase in diesel–biodiesel blends, they cause exergy destruction to decrease at the same rate. This study reviewed in detail the effects of using biodiesel fuels in diesel engines on energy and exergy performance and aimed to contribute to researchers working in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminum oxide

B5:

5% Biodiesel and 95% diesel

B10:

10% Biodiesel and 90% diesel

B20:

20% Biodiesel and 80% diesel

B30:

30% Biodiesel and 70% diesel

B40:

50% Biodiesel and 50% diesel

B50:

50% Biodiesel

B100:

100% Biodiesel

BDF100:

100% Biodiesel fuel

BMEP:

Brake mean effective pressure

BTE:

Brake thermal efficiency

BSEC:

Brake specific energy consumption

BSFC:

Brake specific fuel consumption

CDC:

Conventional diesel combustion

CI:

Compression ignition

CO:

Carbon monoxide

CO2 :

Carbon dioxide

DFRCCI:

Dual fuel reactivity-controlled compression ignition

DI:

Direct injection

DOHC:

Dual overhead camshaft engine

EGR:

Exhaust gas recirculation

EPS:

Expanded polystyrene

GDI:

Gasoline direct injection

HC:

Unburned hydrocarbon

HCC:

Hemispherical combustion chamber

HOME:

High-oleic soybean oil methyl ester

JIS#2:

Japanese industrial standard diesel no. 2

MAB:

Microalgae biodiesel

MB:

Microalgae biodiesel

MOME:

Mahua oil methyl ester

NEEM:

Neem seed oil biodiesel

NOX :

Nitrogen oxide

OPB:

Opium poppy biodiesel

O2 :

Oxygen

PB:

Palm biodiesel

PPME:

Pongamia pinata methyl ester

RO:

Rapeseed oil biodiesel

TCC:

Toroidal combustion chamber

TCI:

Transistor coil ignition

TRCC:

Trapezoidal combustion chamber

TiO2 :

Titanium dioxide

SB:

Simarouba biodiesel

SME:

Soybean oil methyl ester

SMBO:

Spirulina microalgae bio-oil

SO:

Soybean biodiesel

SRME:

Shorea robusta methyl ester

YGME:

Yellow grease methyl ester

WCO:

Waste cooking oil

WFOB:

Waste frying oil biodiesel

c :

Specific heat capacity (kJ kg1 K1)

E :

Energy rate (kW)

\(\dot{{Ex}}\) :

Exergy rate (kW)

Hu:

Heat value of fuel (kJ kg1)

h :

Enthalpy (kJ)

\(\dot{m}\) :

Mass flow rate (kg s1)

n :

Engine speed (rpm)

Nm:

Newton meter

P :

Pressure (kPa)

P 0 :

Pressure of the environment (kPa)

\(\dot{Q}\) :

Heat transfer rate (kW)

R:

Gas constant (kJ kg1 K1)

\(\overline{\mathrm{R} }\) :

Universal gas constant (8.314 J mol K1)

T :

Temperature (K)

T 0 :

Temperature of the environment (K)

rpm:

Revolutions per minute

s :

Entropy (kJ kg1 K1)

s gen :

Entropy generated (kW K1)

y e :

Component mole fraction (%)

\(\dot{W}\) :

Work (kW)

η :

Thermal efficiency

η ex :

Exergy efficiency

µ :

Gas viscosity

φ :

Fuel exergy factor

ε :

Flow exergy

air:

Air

av:

Average

chem:

Chemical

cw:

Cooling water

dest:

Destruction

ex:

Exhaust

heat:

Heat transfer

in:

Inlet

fuel:

Fuel

loss:

Loss

out:

Outlet

p:

Potential

phy:

Physical

ref:

Reference

s:

Source

w:

Work

0:

Environmental conditions

References

  1. Kalvin R, Taweekun J, Maliwan K, Ali HM. Fabrication of catalytic converter with different materials and comparison with existing materials in addition to analysis of turbine installed at the exhaust of 4 stroke SI engine. Sustainability. 2021;13(18):10470.

    Article  CAS  Google Scholar 

  2. Öztürk E, Can Ö, Usta N, Yücesu HS. Effects of retarded fuel injection timing on combustion and emissions of a diesel engine fueled with canola biodiesel. Eng Sci Technol Int J. 2020;23(6):1466–75.

    Google Scholar 

  3. Sathyamurthy R, Balaji D, Gorjian S, Muthiya SJ, Bharathwaaj R, Vasanthaseelan S, Essa FA. Performance, combustion and emission characteristics of a DI-CI diesel engine fueled with corn oil methyl ester biodiesel blends. Sustain Energy Technol Assessm. 2021;43:100981.

    Google Scholar 

  4. Örs İ. Effects on performance, emission and combustion parameters of addition biodiesel and bioethanol into diesel fuel. Int J Automot Eng Technol. 2017;6(4):148–56.

    Article  Google Scholar 

  5. Demirbaş A. Importance of biodiesel as transportation fuel. Energy Policy. 2007;35(9):4661–70.

    Article  Google Scholar 

  6. Duda K, Wierzbicki S, Śmieja M, Mikulski M. Comparison of performance and emissions of a CRDI diesel engine fuelled with biodiesel of different origin. Fuel. 2018;212:202–22.

    Article  CAS  Google Scholar 

  7. Khan HM, Ali CH, Iqbal T, Yasin S, Sulaiman M, Mahmood H, Raashid M, Pasha MMUB. Current scenario and potential of biodiesel production from waste cooking oil in Pakistan: an overview. Chin J Chem Eng. 2019;27(10):2238–50.

    Article  CAS  Google Scholar 

  8. Enweremadu CC, Rutto HL. Combustion, emission and engine performance characteristics of used cooking oil biodiesel—a review. Renew Sustain Energy Rev. 2010;14(9):2863–73.

    Article  CAS  Google Scholar 

  9. Ashok B, Nanthagopal K, Chyuan OH, Le Kim PT, Khanolkar K, Raje N, Raj A, Karthickeyan V, Tamilvanan A. Multi-functional fuel additive as a combustion catalyst for diesel and biodiesel in CI engine characteristics. Fuel. 2020;278:118250.

    Article  CAS  Google Scholar 

  10. Jaichandar S, Annamalai K. Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a DI diesel engine. Fuel. 2012;98:272–9.

    Article  CAS  Google Scholar 

  11. Nautiyal P, Subramanian KA, Dastidar MG, Kumar A. Experimental assessment of performance, combustion and emissions of a compression ignition engine fuelled with Spirulina platensis biodiesel. Energy. 2020;193:116861.

    Article  CAS  Google Scholar 

  12. Wang Y, Ou S, Liu P, Zhang Z. Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers Manag. 2007;48(1):184–8.

    Article  Google Scholar 

  13. Tarabet L, Loubar K, Lounici MS, Hanchi S, Tazerout M. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine. J Biomedicine Biotechnol. 2012;2012:235485.

    Article  Google Scholar 

  14. Mubarak M, Shaija A, Suchithra TV. Experimental evaluation of Salvinia molesta oil biodiesel/diesel blends fuel on combustion, performance and emission analysis of diesel engine. Fuel. 2021;287:119526.

    Article  CAS  Google Scholar 

  15. Behçet R. Performance and emission study of waste anchovy fish biodiesel in a diesel engine. Fuel Process Technol. 2011;92(6):1187–94.

    Article  Google Scholar 

  16. Hazrat MA, Rasul MG, Khan MMK, Ashwath N, Rufford TE. Emission characteristics of waste tallow and waste cooking oil based ternary biodiesel fuels. Energy Proc. 2019;160:842–7.

    Article  CAS  Google Scholar 

  17. Mirbagheri SA, Ardebili SMS, Kiani MKD. Modeling of the engine performance and exhaust emissions characteristics of a single-cylinder diesel using nano-biochar added into ethanol-biodiesel-diesel blends. Fuel. 2020;278:118238.

    Article  CAS  Google Scholar 

  18. Zhou N, Price L, Yande D, Creyts J, Khanna N, Fridley D, Lu H, Feng W, Liu X, Hasanbeigi A, Tian Z, Yang H, Bai Q, Zhu Y, Xiong H, Zhang J, Chrisman K, Agenbroad J, Ke Y, McIntosh R, Mullaney D, Stranger C, Wanless E, Wetzel D, Yee C, Franconi E. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Appl Energy. 2019;239:793–819.

    Article  Google Scholar 

  19. Reitz RD, Duraisamy G. Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Prog Energy Combust Sci. 2015;46:12–71.

    Article  Google Scholar 

  20. Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollution. 2021;276:116731.

    Article  CAS  Google Scholar 

  21. Barua P, Hossain N, Chowdhury T, Chowdhury H. Commercial diesel application scenario and potential of alternative biodiesel from waste chicken skin in Bangladesh. Environ Technol Innovation. 2020;20:101139.

    Article  CAS  Google Scholar 

  22. Brinkman M, Levin-Koopman J, Wicke B, Shutes L, Kuiper M, Faaij A, van der Hilst F. The distribution of food security impacts of biofuels, a Ghana case study. Biomass Bioenergy. 2020;141:105695.

    Article  Google Scholar 

  23. de Sousa LS, de Moura CVR, de Moura EM. Influence of binary, ternary and quaternary mixtures on oxidative stability and study of kinetics and thermodynamic parameters of the degradation process of soybean biodiesel. Fuel. 2020;259:116235.

    Article  Google Scholar 

  24. Sudalaiyandi K, Alagar K, VJ MP, Madhu P. Performance and emission characteristics of diesel engine fueled with ternary blends of linseed and rubber seed oil biodiesel. Fuel. 2021;285:119255.

    Article  Google Scholar 

  25. Noushabadi AS, Dashti A, Raji M, Zarei A, Mohammadi AH. Estimation of cetane numbers of biodiesel and diesel oils using regression and PSO-ANFIS models. Renew Energy. 2020;158:465–73.

    Article  CAS  Google Scholar 

  26. Giakoumis EG, Sarakatsanis CK. A comparative assessment of biodiesel cetane number predictive correlations based on fatty acid composition. Energies. 2019;12(3):422.

    Article  CAS  Google Scholar 

  27. Wang W, Li F, Wang H. The effect of tetrethylenepentamine (TEPA) on the oxidation stability and the lubrication performance of biodiesel. Ind Crops Prod. 2021;171:113910.

    Article  CAS  Google Scholar 

  28. Temizer İ, Eskici B. Investigation on the combustion characteristics and lubrication of biodiesel and diesel fuel used in a diesel engine. Fuel. 2020;278:118363.

    Article  CAS  Google Scholar 

  29. Permanasari AA, Mauludi MN, Sukarni S, Puspitasari P, Zaine SNA, Wahyunengsih W. The potential of waste cooking oil B20 biodiesel fuel with lemon essential oil bioadditive: physicochemical properties, molecular bonding, and fuel consumption. Bull Chem React Eng Catal. 2021;16(3):555–64.

    Article  Google Scholar 

  30. Kurczyński D, Wcisło G, Łagowski P. Experimental study of fuel consumption and exhaust gas composition of a diesel engine powered by biodiesel from waste of animal origin. Energies. 2021;14(12):3472.

    Article  Google Scholar 

  31. Janaun J, Ellis N. Perspectives on biodiesel as a sustainable fuel. Renew Sustain Energy Rev. 2010;14(4):1312–20.

    Article  CAS  Google Scholar 

  32. Huang D, Zhou H, Lin L. Biodiesel: an alternative to conventional fuel. Energy Proc. 2012;16:1874–85.

    Article  Google Scholar 

  33. Mohebbi A, Komarizade MH, Jafarmadar S, Pashai J. Use of waste cooking oil biodiesel in a tractor DI diesel engine. J Food Agricult Environ. 2012;10(2):1290–7.

    CAS  Google Scholar 

  34. Ameer HMB, Ameer MF, Ghachem K, Ali M, Razaq A, Khan SU, Hamza M, Kolsi L. Experimental comparison of performance and emission characteristics of 4-stroke CI engine operated with Roselle and Jatropha biodiesel blends. J Indian Chem Soc. 2022;99(6):100505.

    Article  Google Scholar 

  35. Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci. 2007;33(3):233–71.

    Article  CAS  Google Scholar 

  36. Jafarmadar S, Pashae J. Experimental study of the effect of castor oil biodiesel fuel on performance and emissions of turbocharged DI diesel. Int J Eng. 2013;26(8):905–12.

    CAS  Google Scholar 

  37. Verma P, Sharma MP. Review of process parameters for biodiesel production from different feedstocks. Renew Sustain Energy Rev. 2016;62:1063–71.

    Article  CAS  Google Scholar 

  38. Balasubramanian D, Hoang AT, Venugopal IP, Shanmugam A, Gao J, Wongwuttanasatian T. Numerical and experimental evaluation on the pooled effect of waste cooking oil biodiesel/diesel blends and exhaust gas recirculation in a twin-cylinder diesel engine. Fuel. 2021;287:119815.

    Article  CAS  Google Scholar 

  39. Yahya SI, Aghel B. Estimation of kinematic viscosity of biodiesel-diesel blends: Comparison among accuracy of intelligent and empirical paradigms. Renew Energy. 2021;177:318–26.

    Article  Google Scholar 

  40. Mukhtar A, Saqib S, Lin H, Shah MUH, Ullah S, Younas M, Rezakazemi M, Ibrahim M, Mahmood A, Asif S, Bokhari A. Current status and challenges in the heterogeneous catalysis for biodiesel production. Renew Sustain Energy Rev. 2022;157:112012.

    Article  CAS  Google Scholar 

  41. Huang Z, Huang J, Luo J, Hu D, Yin Z. Performance enhancement and emission reduction of a diesel engine fueled with different biodiesel-diesel blending fuel based on the multi-parameter optimization theory. Fuel. 2022;314:122753.

    Article  CAS  Google Scholar 

  42. Noor CM, Noor MM, Mamat R. Biodiesel as alternative fuel for marine diesel engine applications: a review. Renew Sustain Energy Rev. 2018;94:127–42.

    Article  Google Scholar 

  43. Veljković VB, Biberdžić MO, Banković-Ilić IB, Djalović IG, Tasić MB, Nježić ZB, Stamenković OS. Biodiesel production from corn oil: a review. Renew Sustain Energy Rev. 2018;91:531–48.

    Article  Google Scholar 

  44. Rochelle D, Najafi H. A review of the effect of biodiesel on gas turbine emissions and performance. Renew Sustain Energy Rev. 2019;105:129–37.

    Article  CAS  Google Scholar 

  45. Rajendran S. A comparative study of performance and emission characteristics of neat biodiesel operated diesel engine: a review. J Therm Anal Calorim. 2021;146(3):1015–25.

    Article  CAS  Google Scholar 

  46. Jayakumar M, Karmegam N, Gundupalli MP, Gebeyehu KB, Asfaw BT, Chang SW, Ravindran B, Awasthi MK. Heterogeneous base catalysts: synthesis and application for biodiesel production-a review. Bioresour Technol. 2021;331:125054.

    Article  CAS  PubMed  Google Scholar 

  47. Hosseinzadeh-Bandbafha H, Nizami AS, Kalogirou SA, Gupta VK, Park YK, Fallahi A, Sulaiman A, Ranibari M, Rahnama H, Aghbashlo M, Peng W, Tabatabaei M. Environmental life cycle assessment of biodiesel production from waste cooking oil: a systematic review. Renew Sustain Energy Rev. 2022;161:112411.

    Article  CAS  Google Scholar 

  48. Çakmak A, Yeşilyurt MK, Erol D, Doğan B. The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses. J Therm Anal Calorim. 2022;147:11231–59.

    Article  Google Scholar 

  49. Çanakci M, Hosoz M. Energy and exergy analyses of a diesel engine fuelled with various biodiesels. Energy Sour Part B. 2006;1(4):379–94.

    Article  Google Scholar 

  50. Şanli BG, Uludamar E, Özcanli M. Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel. 2019;258:116116.

    Article  Google Scholar 

  51. Odibi C, Babaie M, Zare A, Nabi MN, Bodisco TA, Brown RJ. Exergy analysis of a diesel engine with waste cooking biodiesel and triacetin. Energy Convers Manag. 2019;198:111912.

    Article  CAS  Google Scholar 

  52. Madheshiya AK, Vedrtnam A. Energy-exergy analysis of biodiesel fuels produced from waste cooking oil and mustard oil. Fuel. 2018;214:386–408.

    Article  CAS  Google Scholar 

  53. Aghbashlo M, Tabatabaei M, Mohammadi P, Pourvosoughi N, Nikbakht AM, Goli SAH. Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Convers Manag. 2015;105:328–37.

    Article  CAS  Google Scholar 

  54. Panigrahi N, Mohanty MK, Mishra SR, Mohanty RC. Performance, emission, energy, and exergy analysis of a CI engine using mahua biodiesel blends with diesel. Int Sch Res Notices. 2014;207465:1–13.

    Google Scholar 

  55. Tat ME. Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel. Fuel Process Technol. 2011;92(7):1311–21.

    Article  CAS  Google Scholar 

  56. Chaudhary V, Gakkhar R. Exergy based performance comparison of DI diesel engine fuelled with WCO15 and NEEM15 biodiesel. Environ Prog Sustain Energy. 2020;39(3):e13363.

    Article  CAS  Google Scholar 

  57. Sayin Kul B, Kahraman A. Energy and exergy analyses of a diesel engine fuelled with biodiesel-diesel blends containing 5% bioethanol. Entropy. 2016;18(11):387.

    Article  Google Scholar 

  58. Jafarmadar S. Multidimensional modelling of the effect of engine load on various exergy terms in an indirect injection diesel engine. Int J Exergy. 2014;15(1):90–107.

    Article  Google Scholar 

  59. Said Z, Ghodbane M, Tiwari AK, Ali HM, Boumeddane B, Ali ZM. 4E (Energy, Exergy, Economic, and Environment) examination of a small LFR solar water heater: an experimental and numerical study. C Stud in Therm Eng. 2021;27:101277.

    Article  Google Scholar 

  60. López I, Quintana CE, Ruiz JJ, Cruz-Peragón F, Dorado MP. Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: preliminary exergy analysis. Energy Convers Manag. 2014;85:227–33.

    Article  Google Scholar 

  61. Şanli BG, Uludamar E. Energy and exergy analysis of a diesel engine fuelled with diesel and biodiesel fuels at various engine speeds. Energy Sour Part A. 2020;42(11):1299–313.

    Article  Google Scholar 

  62. Arshad A, Ali HM, Habib A, Bashir MA, Jabbal M, Yan Y. Energy and exergy analysis of fuel cells: a review. Therm Sci Eng Prog. 2019;9:308–21.

    Article  Google Scholar 

  63. Rangasamy M, Duraisamy G, Govindan N. A comprehensive parametric, energy and exergy analysis for oxygenated biofuels based dual-fuel combustion in an automotive light duty diesel engine. Fuel. 2020;277:118167.

    Article  CAS  Google Scholar 

  64. Hürdoğan E. Thermodynamic analysis of a diesel engine fueled with diesel and peanut biodiesel. Environ Prog Sustain Energy. 2016;35(3):891–7.

    Article  Google Scholar 

  65. Karthikeyan A, Jayaprabakar J. Energy and exergy analysis of compression ignition engine fuelled with rice bran biodiesel blends. Int J Ambient Energy. 2019;40(4):381–7.

    Article  CAS  Google Scholar 

  66. Kavitha KR, Jayaprabakar J, Prabhu A. Exergy and energy analyses on biodiesel-diesel-ethanol blends in a diesel engine. Int J Ambient Energy. 2022;43:778–82.

    Article  CAS  Google Scholar 

  67. Yildiz I, Caliskan H, Mori K. Exergy analysis and nanoparticle assessment of cooking oil biodiesel and standard diesel fueled internal combustion engine. Energy Environ. 2020;31(8):1303–17.

    Article  CAS  Google Scholar 

  68. Sekmen P, Yılbaşı Z. Application of energy and exergy analyses to a CI engine using biodiesel fuel. Math Comput App. 2011;16(4):797–808.

    Google Scholar 

  69. Kaya C, Aydin Z, Kökkülünk G, Safa A. Exergetic and exergoeconomic analyzes of compressed natural gas as an alternative fuel for a diesel engine. Energy Sour Part A. 2020. https://doi.org/10.1080/15567036.2020.1811429.

    Article  Google Scholar 

  70. Khoobbakht G, Akram A, Karimi M, Najafi G. Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a DI diesel engine. Appl Therm Eng. 2016;99:720–9.

    Article  CAS  Google Scholar 

  71. Murugapoopathi S, Vasudevan D. Energy and exergy analysis on variable compression ratio multi-fuel engine. J Therm Anal Calorim. 2019;136(1):255–66.

    Article  CAS  Google Scholar 

  72. Rai RK, Sahoo RR. Effect of Shorea robusta methyl ester biodiesel blends on the exergy and sustainability analysis of diesel engine. Exp Heat Transf. 2021;34(5):443–60.

    Article  CAS  Google Scholar 

  73. Rai RK, Sahoo RR. Engine performance, emission, and sustainability analysis with diesel fuel-based Shorea robusta methyl ester biodiesel blends. Fuel. 2021;292:120234.

    Article  CAS  Google Scholar 

  74. Hoseinpour M, Sadrnia H, Tabasizadeh M, Ghobadian B. Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation. Energy. 2017;141:2408–20.

    Article  CAS  Google Scholar 

  75. Thanh NC, Askary AE, Elfasakhany A, Nithya S. Exergy and energy analyses of the spirulina microalgae blends in a direct injection engine at variable engine loads. J Energy Resources Technol. 2021;143(12):120908.

    Article  CAS  Google Scholar 

  76. Şanli BG. Energetic and exergetic performance of a diesel engine fueled with diesel and microalgae biodiesel. Energy Sour Part A. 2019;41(20):2519–33.

    Article  Google Scholar 

  77. Iortyer HA, Bwonsi L. Energy and Exergy Analysis of a CI engine fuelled with biodiesel fuel from palm kernel oil and its blends with petroleum diesel. Int J Advanced Eng Research Sci. 2017;4(7):237214.

    Google Scholar 

  78. Moran MJ, Shapiro HN, Boettner DD, Bailey MB. Fundamentals of engineering thermodynamics. Wiley; 2010.

    Google Scholar 

  79. Yaşar A, Ali AA. Investigation of effects of diesel and biodiesel fuels on energy and exergy analysis in diesel engines. Cukurova Univ J Faculty Eng. 2016;31(1):159–74.

    Google Scholar 

  80. Sangsawang T, Sirisomboon K, Wasananon S. The analysis of exergy in a single cylinder diesel engine fuelled by diesel and biodiesel. J Sci Technol MSU. 2012;31(4):556–62.

    Google Scholar 

  81. Panigrahi N, Mohanty MK, Mishra SR, Mohanty RC. Energy and exergy analysis of a diesel engine fuelled with diesel and simarouba biodiesel blends. J Inst Eng India Series C. 2018;99(1):9–17.

    Article  Google Scholar 

  82. Jannatkhah J, Najafi B, Ghaebi H. Energy-exergy analysis of compression ignition engine running with biodiesel fuel extracted from four different oil-basis materials. Int J G Energy. 2019;16(10):749–62.

    Article  CAS  Google Scholar 

  83. Nemati P, Jafarmadar S, Taghavifar H. Exergy analysis of biodiesel combustion in a direct injection compression ignition (CI) engine using quasi-dimensional multi-zone model. Energy. 2016;115:528–38.

    Article  CAS  Google Scholar 

  84. Azoumah Y, Blin J, Daho T. Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels. Renew Energy. 2009;34(6):1494–500.

    Article  CAS  Google Scholar 

  85. Kaya C, Kökkülünk G. Biodiesel as alternative additive fuel for diesel engines: an experimental and theoretical investigation on emissions and performance characteristics. Energy Sour Part A. 2020. https://doi.org/10.1080/15567036.2020.1774685.

    Article  Google Scholar 

  86. Caliskan H, Tat ME, Hepbasli A, Van Gerpen JH. Exergy analysis of engines fuelled with biodiesel from high oleic soybeans based on experimental values. Int J Exergy. 2010;7(1):20–36.

    Article  Google Scholar 

  87. Gökalp B, Soyhan HS, Sarac HI, Bostan D, Şengün Y. Biodiesel addition to standard diesel fuels and marine fuels used in a diesel engine: effects on emission characteristics and first-and second-law efficiencies. Energy Fuels. 2009;23(4):1849–57.

    Article  Google Scholar 

  88. Yamin JA, Sheet EAE, Hdaib I. Exergy analysis of biodiesel fueled direct injection CI engines. Energy Sour Part A. 2018;40(11):1351–8.

    Article  CAS  Google Scholar 

  89. Jafarmadar S, Amini Niaki SR. Simulation investigation of the effect of various exhaust gas recirculation temperatures and amounts on the exergy terms in a direct injection diesel engine fueled by diesel/biodiesel. Environ Prog Sustain Energy. 2021;40(4):e13605.

    Article  CAS  Google Scholar 

  90. Benjumea P, Agudelo J, Agudelo A. Effect of altitude and palm oil biodiesel fuelling on the performance and combustion characteristics of a HSDI diesel engine. Fuel. 2009;88(4):725–31.

    Article  CAS  Google Scholar 

  91. Paul A, Panua R, Debroy D. An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by diesel-ethanol-biodiesel blends. Energy. 2017;141:839–52.

    Article  CAS  Google Scholar 

  92. Nabi MN, Rasul MG. Influence of second generation biodiesel on engine performance, emissions, energy and exergy parameters. Energy Convers Manag. 2018;169:326–33.

    Article  CAS  Google Scholar 

  93. Karthickeyan V. Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis. Energy. 2019;176:830–52.

    Article  CAS  Google Scholar 

  94. Sanli BG, Özcanli M, Serin H. Assessment of thermodynamic performance of an IC engine using microalgae biodiesel at various ambient temperatures. Fuel. 2020;277: 118108.

    Article  Google Scholar 

  95. Sarıkoç S, Örs İ, Ünalan S. An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends. Fuel. 2020;268:117321.

    Article  Google Scholar 

  96. Mushtaq MU, Kamran MS, Yaqoob H, Jamil MA, Shafiq MB, Rehman T, Ali HM. Exergy destruction rate minimization in the absorber of a double effect vapor absorption system. Therm Sci. 2022;26(2B):1421–34.

    Article  Google Scholar 

  97. Aghbashlo M, Tabatabaei M, Mohammadi P, Mirzajanzadeh M, Ardjmand M, Rashidi A. Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. Renew Energy. 2016;93:353–68.

    Article  CAS  Google Scholar 

  98. Aghbashlo M, Tabatabaei M, Khalife E, Najafi B, Mirsalim SM, Gharehghani A, Mohammadi P, Dadak A, Shojaei TR, Khounani Z. A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part II–Exergetic analysis. Fuel. 2017;205:262–71.

    Article  CAS  Google Scholar 

  99. Özcan H. Energy and exergy analyses of Al2O3-diesel-biodiesel blends in a diesel engine. Int J Exergy. 2019;28(1):29–45.

    Article  Google Scholar 

  100. Karagoz M, Uysal C, Agbulut U, Saridemir S. Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles. Energy. 2021;214:118830.

    Article  CAS  Google Scholar 

  101. Karami S, Gharehghani A. Effect of nano-particles concentrations on the energy and exergy efficiency improvement of indirect-injection diesel engine. Energy Rep. 2021;7:3273–85.

    Article  Google Scholar 

  102. Anderson A, Al-Mohaimeed AM, Elshikh MS, Praveenkumar TR, Sekar M. Exergy and energy analysis of α-Fe2O3-Doped Al2O3 nanocatalyst-based biodiesel blends-performance and emission characteristics. J Energy Resour Technol. 2021;143(12):120902.

    Article  CAS  Google Scholar 

  103. Shadidi B, Alizade HHA, Najafi G. Performance and exergy analysis of a diesel engine run on petrodiesel and biodiesel blends containing mixed CeO2 and MoO3 nanocatalyst. Biofuels. 2022;13(1):105–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Battal Doğan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, B., Erol, D. The investigation of energy and exergy analyses in compression ignition engines using diesel/biodiesel fuel blends-a review. J Therm Anal Calorim 148, 1765–1782 (2023). https://doi.org/10.1007/s10973-022-11862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11862-y

Keywords

Navigation