Skip to main content
Log in

The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of alcohol with traditional diesel fuel in diesel engines reduces environmental damage. When the ternary mixtures obtained by adding biodiesel to diesel-alcohol fuel mixtures are used without making any changes in the compression-ignition (CI) engine, there is no significant problem in terms of performance and emissions. This research dealt energetic, exergetic, and environmental evaluation for a CI engine fueled with blends created using diesel/biodiesel/n-octanol at a constant speed of 1500 rpm and different loads (25, 50, 75, and 100%). Performance and emission values were recorded in the tests. Economic and environmental analyses were realized by using the data obtained in these tests in thermodynamic relations. The losses and efficiency of the engine were computed in the energy analysis. The highest thermal efficiency was found to be 40.6% in B20 and B20OCT5 at full load, while the lowest one was observed to be 15.77% when the engine fueled with B100 at 25% load. In the exergy analysis, exhaust exergy, exergy destroyed, and entropy generation were determined. Thermal and exergy efficiencies were parallel in all fuels depending on the load. The highest exergy efficiency was calculated to be 30.4% for B20 and B20OCT5 at full load. Lower exergy destruction was acquired for diesel fuel at full load in comparison with B20OCT20, B20OCT15 and B20OCT10. CO2 emission of fuels was used in exergy-based environmental analysis. The lowest environmental cost was determined as 3.85 $ month−1 at 25% load in B20OCT10. The highest power cost was achieved to be 10.61 $ MJ−1 at 25% load when the engine was run on B20OCT20. The cost of exergy losses at 25% load was computed to be 3.67 $ h−1 for B20OCT20. While the increase in alcohol content in the blends caused a decrease in harmful pollutants, it is not economical due to the expensive pump prices. To conclude, it is to be clearly indicated that due to systematic thermodynamic, economic, and environmental analyses and the usage of n-octanol as a long-chain alcohol in the CI engine with blending diesel and biodiesel, this paper goes beyond previous efforts in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data used and/or analyzed throughout the present study are available from the authors on reasonable request.

Abbreviations

c :

Specific exergy cost ($ MJ1)

C :

Cost flow rate ($ h1)

\(C_{{{\text{co}}_{{2}} }}\) :

CO2 emission (kg CO2 time1)

CRF:

Capital recovery factor (–)

Cp:

Specific heat capacity (kJ kg1 K1)

\(E_{{{\text{co}}_{{2}} }}\) :

Envireconomic parameter ($ time1)

\({\text{Ex}}_{{{\text{co}}_{{2}} }}\) :

Exergoenvireconomic parameter ($ time1)

E fuel :

Energy of fuel (kW)

\(\mathop {{\text{Ex}}}\limits^{ \cdot }\) :

Exergy rate (kW)

f :

Exergoeconomic factor (%)

Hu:

Heat value of fuel (kJ kg1)

h :

Specific enthalpy (kJ)

i :

Interest rate (%)

M f :

Maintenance factor (–)

\(\dot{m}\) :

Mass flow rate (kg s1)

n :

Engine speed (rpm)

N :

System lifetime (year)

\(N_{{{\text{co}}_{{2}} }}\) :

CO2 emission value (kg CO2 kW1 h1)

P :

Pressure (kPa)

\(P_{{{\text{co}}_{{2}} }}\) :

CO2 emission value ($ kW1 CO21)

P 0 :

Pressure of the environment (kPa)

\(\dot{Q}\) :

Heat transfer rate (kW)

R :

Gas constant (kJ kg1 K1)

\({\overline{\text{R}}}\) :

Universal gas constant (8.314 J mol K1)

T :

Temperature (K)

T 0 :

Temperature of the environment (K)

T :

Torque (Nm)

t year :

Annual working hours (h)

rpm:

Revolutions per minute

s:

Specific entropy (kJ kg1 K1)

S gen :

Entropy generation rate (kW K1)

y e :

Component mole fraction (%)

\(\dot{W}\) :

Power (kW)

Z :

Engine cost ($)

\(\dot{Z}\) :

Capital investment cost rate ($ h1

η :

Thermal efficiency

µ :

Gas viscosity

φ :

Fuel exergy factor

ε :

Flow exergy

a:

Air

chem:

Chemical

cw:

Cooling water

dest:

Destroyed

ex:

Exhaust

heat:

Heat transfer

in:

Inlet

k:

Kinetic

out:

Outlet

p:

Potential

phy:

Physical

ref:

Reference

s:

Source

w:

Work

0:

Environmental conditions

ABDC:

After the bottom dead center

ATDC:

After the top dead centre

BBDC:

Before the bottom dead centre

BTDC:

Before the top dead centre

BTE:

Brake thermal efficiency

B0:

100% Diesel

B5:

95% Diesel and 5% biodiesel

B10:

90% Diesel and 10% biodiesel

B15:

85% Diesel and 15% biodiesel

B20:

80% Diesel and 20% biodiesel

B25:

75% Diesel and 25% biodiesel

B30:

70% Diesel and 30% biodiesel

B65:

65% Diesel and 35% biodiesel

B70:

30% Diesel and 70% biodiesel

B100:

100% Biodiesel

BSFC:

Brake specific fuel consumption

B90P10:

90% Biodiesel and10% n-pentanol

B80P20:

80% Biodiesel and 20% n-pentanol

B70P30:

70% Biodiesel and 30% n-pentanol

B90O10:

90% Biodiesel and 10% n-octanol

B80O20:

80% Biodiesel and 20% n-octanol

B70O30:

70% Biodiesel and 30% n-octanol

BBU10:

90% Biodiesel and 10% n-butanol

BBU20:

80% Biodiesel and 20% n-butanol

BBU40:

60% Biodiesel and 40% n-butanol

C15H25 :

Diesel

C21H28O2 :

Biodiesel

C8H18O:

N-octanol

CI:

Compression-ignition

CO:

Carbon monoxide

CO2 :

Carbon dioxide

B20OCT5:

75% Diesel, 20% biodiesel and 5% n-octanol

B20OCT10:

70% Diesel, 20% biodiesel and 10% n-octanol

B20OCT15:

65% Diesel, 20% biodiesel and 15% n-octanol

B20OCT20:

60% Diesel, 20% biodiesel and 20% n-octanol

E5B50:

45% Diesel, 5% ethanol and 50% biodiesel

E10B50:

40% Diesel, 10% ethanol and 50% biodiesel

E15B50:

35% Diesel, 15% ethanol and 50% biodiesel

E20B50:

30% Diesel, 20% ethanol and 50% biodiesel

DI:

Direct-injection

EGR:

Exhaust gas recirculation

EXEN:

Exergoenvironment

EXENEC:

Exergoenviroeconomic

HC:

Unburned hydrocarbon

HCCI:

Homogeneous charge compression-ignition

H2O:

Water

KME5:

95% Diesel and 5% karanja biodiesel

KME10:

90% Diesel and 10% karanja biodiesel

KME20:

80% Diesel and 20% karanja biodiesel

KME30:

70% Diesel and 30% karanja biodiesel

KME100:

100% Karanja biodiesel

N:

Nitrogen

N2 :

Nitrogen

NOX :

Nitrogen oxides

OCT30:

70% Diesel and 30% n-octanol

O2 :

Oxygen

PM:

Particulate matter

SAE:

Society of automotive engineers

SI:

Sustainability index

SO2 :

Sulfur dioxide

WPO:

Waste plastic oil

References

  1. Said Z, Ghodbane M, Tiwari AK, Ali HM, Boumeddane B, Ali ZM. 4E (Energy, Exergy, Economic, and Environment) examination of a small LFR solar water heater: an experimental and numerical study. Case Stud Therm Eng. 2017;27:101277.

    Article  Google Scholar 

  2. Hassan F, Jamil F, Hussain A, Ali HM, Janjua MM, Khushnood S, Farhan M, Altaf K, Said Z, Li C. Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review. Sustain Energy Technol Assess. 2022;49:101646.

    Google Scholar 

  3. Abedin MJ, Masjuki HH, Kalam MA, Sanjid A, Rahman SA, Masum BM. Energy balance of internal combustion engines using alternative fuels. Renew Sustain Energy Rev. 2013;26:20–33.

    Article  Google Scholar 

  4. Ejaz A, Jamil F, Ali HM. A novel thermal regulation of photovoltaic panels through phase change materials with metallic foam-based system and a concise comparison: an experimental study. Sustain Energy Technol Assess. 2022;49:101726.

    Google Scholar 

  5. Othman MF, Adam A, Najafi G, Mamat R. Green fuel as alternative fuel for diesel engine: a review. Renew Sustain Energy Rev. 2017;80:694–709.

    Article  Google Scholar 

  6. Sultan H, Muhammad HA, Bhatti UH, Min GH, Baek IH, Baik YJ, Nam SC. Reducing the efficiency penalty of carbon dioxide capture and compression process in a natural gas combined cycle power plant by process modification and liquefied natural gas cold energy integration. Energy Convers Manag. 2021;244:114495.

    Article  CAS  Google Scholar 

  7. Janaun J, Ellis N. Perspectives on biodiesel as a sustainable fuel. Renew Sustain Energy Rev. 2010;14(4):1312–20.

    Article  CAS  Google Scholar 

  8. Khan MM, Sharma RP, Kadian AK, Hasnain SM. An assessment of alcohol inclusion in various combinations of biodiesel-diesel on the performance and exhaust emission of modern-day compression ignition engines-a review. Mater Sci Energy Technol. 2022;5:81–98.

    CAS  Google Scholar 

  9. Verma P, Sharma MP. Review of process parameters for biodiesel production from different feedstocks. Renew Sustain Energy Rev. 2016;62:1063–71.

    Article  CAS  Google Scholar 

  10. Huang D, Zhou H, Lin L. Biodiesel: an alternative to conventional fuel. Energy Procedia. 2012;16:1874–85.

    Article  Google Scholar 

  11. Yildiz I, Caliskan H, Mori K. Assessment of biofuels from waste cooking oils for diesel engines in terms of waste-to-energy perspectives. Sustain Energy Technol Assess. 2022;50:101839.

    Google Scholar 

  12. Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci. 2007;33(3):233–71.

    Article  CAS  Google Scholar 

  13. Razak NH, Hashim H, Yunus NA, Klemeš JJ. Reducing diesel exhaust emissions by optimisation of alcohol oxygenates blend with diesel/biodiesel. J Clean Prod. 2021;316:128090.

    Article  CAS  Google Scholar 

  14. Rahiman MK, Santhoshkumar S, Subramaniam D, Avinash A, Pugazhendhi A. Effects of oxygenated fuel pertaining to fuel analysis on diesel engine combustion and emission characteristics. Energy. 2022;239:122373.

    Article  CAS  Google Scholar 

  15. Zakaria Z, Kamarudin SK, Abd Wahid KA, Hassan SHA. The progress of fuel cell for Malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system. Renew Sustain Energy Rev. 2021;144:110984.

    Article  Google Scholar 

  16. Kumar S, Cho JH, Park J, Moon I. Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renew Sustain Energy Rev. 2013;22:46–72.

    Article  CAS  Google Scholar 

  17. Zhang K, Pereira AS, Martin JW. Estimates of octanol–water partitioning for thousands of dissolved organic species in oil sands process-affected water. Environ Sci Technol. 2015;49(14):8907–13.

    Article  CAS  PubMed  Google Scholar 

  18. Ashok B, Nanthagopal K, Anand V, Aravind KM, Jeevanantham AK, Balusamy S. Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel. 2019;235:363–73.

    Article  CAS  Google Scholar 

  19. Nour M, Attia AM, Nada SA. Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Convers Manag. 2019;185:313–29.

    Article  CAS  Google Scholar 

  20. Górski K, Przedlacki M. Evaluation of the influence of diethyl ether (DEE) addition on selected physicochemical properties of diesel oil and ignition delay period. Energy Fuels. 2014;28(4):2608–16.

    Article  CAS  Google Scholar 

  21. Li Y, Jia M, Chang Y, Kokjohn SL, Reitz RD. Thermodynamic energy and exergy analysis of three different engine combustion regimes. Appl Energy. 2016;180:849–58.

    Article  Google Scholar 

  22. Chintala V, Subramanian KA. Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis. Energy. 2014;67:162–75.

    Article  CAS  Google Scholar 

  23. Caliskan H, Tat ME, Hepbasli A, Van Gerpen JH. Exergy analysis of engines fuelled with biodiesel from high oleic soybeans based on experimental values. Int J Exergy. 2010;7(1):20–36.

    Article  Google Scholar 

  24. Arshad A, Ali HM, Habib A, Bashir MA, Jabbal M, Yan Y. Energy and exergy analysis of fuel cells: a review. Therm Sci Eng Prog. 2019;9:308–21.

    Article  Google Scholar 

  25. Jena J, Misra RD. Effect of fuel oxygen on the energetic and exergetic efficiency of a compression ignition engine fuelled separately with palm and karanja biodiesels. Energy. 2014;68:411–9.

    Article  CAS  Google Scholar 

  26. Zaharin MSM, Abdullah NR, Najafi G, Sharudin H, Yusaf T. Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: a review. Renew Sustain Energy Rev. 2017;79:475–93.

    Article  CAS  Google Scholar 

  27. Panithasan MS, Gopalakichenin D, Venkadesan G, Veeraraagavan S. Impact of rice husk nanoparticle on the performance and emission aspects of a diesel engine running on blends of pine oil-diesel. Environ Sci Pollut Res. 2019;26(1):282–91.

    Article  CAS  Google Scholar 

  28. Hasan MM, Rahman MM. Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: a review. Renew Sustain Energy Rev. 2017;74:938–48.

    Article  CAS  Google Scholar 

  29. Rajak U, Chaurasiya PK, Nashine P, Verma M, Kota TR, Verma TN. Financial assessment, performance and emission analysis of Moringa oleifera and Jatropha curcas methyl ester fuel blends in a single-cylinder diesel engine. Energy Convers Manag. 2020;224:113362.

    Article  CAS  Google Scholar 

  30. Nanthagopal K, Ashok B, Saravanan B, Korah SM, Chandra S. Effect of next generation higher alcohols and Calophyllum inophyllum methyl ester blends in diesel engine. J Clean Prod. 2018;180:50–63.

    Article  CAS  Google Scholar 

  31. Chandra Sekar MS, Ananthan VR, Baskaran N, Suresh Kumar HK, Arumugam R. Combustion, performance, and emission study on the octanol-neem biodiesel blends fueled diesel engine. Energy Sources Part A 2020;1–13 (in print).

  32. Gopal K, Sathiyagnanam AP, Kumar BR, Saravanan S, Rana D, Sethuramasamyraja B. Prediction of emissions and performance of a diesel engine fueled with n-octanol/diesel blends using response surface methodology. J Clean Prod. 2018;184:423–39.

    Article  CAS  Google Scholar 

  33. Pan M, Zheng Z, Huang R, Zhou X, Huang H, Pan J, Chen Z. Reduction in PM and NOX of a diesel engine integrated with n-octanol fuel addition and exhaust gas recirculation. Energy. 2019;187:115946.

    Article  CAS  Google Scholar 

  34. De Poures MV, Siva AP, Rana D, Babu RK, Subramani S, Sethuramasamyraja B. Using renewable n-octanol in a non-road diesel engine with some modifications. Energy Sources Part A. 2019;41(10):1194–208.

    Article  CAS  Google Scholar 

  35. Damodharan D, Gopal K, Sathiyagnanam AP, Rajesh Kumar B, Depoures MV, Mukilarasan N. Performance and emission study of a single cylinder diesel engine fuelled with n-octanol/WPO with some modifications. Int J Ambient Energy. 2021;42(7):779–88.

    Article  CAS  Google Scholar 

  36. Zhou Q, Wang Y, Wang X, Bai Y. Experimental investigation into the oxidation reactivity, morphology and graphitization of soot particles from diesel/n-octanol mixtures. J Environ Sci. 2022;112:218–30.

    Article  Google Scholar 

  37. Wang Q, Ni J, Huang R. The potential of oxygenated fuels (n-octanol, methylal, and dimethyl carbonate) as an alternative fuel for compression ignition engines with different load conditions. Fuel. 2022;6(309):122129.

    Article  CAS  Google Scholar 

  38. Tian J, Liu Y, Bi H, Li F, Bao L, Han K, Zhou W, Ni Z, Lin Q. Experimental study on the spray characteristics of octanol diesel and prediction of spray tip penetration by ANN model. Energy. 2022;239:121920.

    Article  CAS  Google Scholar 

  39. López I, Quintana CE, Ruiz JJ, Cruz-Peragón F, Dorado MP. Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: preliminary exergy analysis. Energy Convers Manag. 2014;85:227–33.

    Article  Google Scholar 

  40. Magno A, Mancaruso E, Vaglieco BM. Effects of both blended and pure biodiesel on waste heat recovery potentiality and exhaust emissions of a small CI (compression ignition) engine. Energy. 2015;86:661–71.

    Article  CAS  Google Scholar 

  41. Nemati P, Jafarmadar S, Taghavifar H. Exergy analysis of biodiesel combustion in a direct injection compression ignition (CI) engine using quasi-dimensional multi-zone model. Energy. 2016;115:528–38.

    Article  CAS  Google Scholar 

  42. Khoobbakht G, Akram A, Karimi M, Najafi G. Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a DI diesel engine. Appl Therm Eng. 2016;99:720–9.

    Article  CAS  Google Scholar 

  43. Nabi MN, Rasul MG, Anwar M, Mullins BJ. Energy, exergy, performance, emission and combustion characteristics of diesel engine using new series of non-edible biodiesels. Renew Energy. 2019;140:647–57.

    Article  CAS  Google Scholar 

  44. Sarıkoç S, Örs İ, Ünalan S. An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends. Fuel. 2020;268:117321.

    Article  CAS  Google Scholar 

  45. Hosseini SE, Barzegaravval H, Ganjehkaviri A, Wahid MA, Jaafar MM. Modelling and exergoeconomic-environmental analysis of combined cycle power generation system using flameless burner for steam generation. Energy Convers Manag. 2017;135:362–72.

    Article  CAS  Google Scholar 

  46. Cavalcanti EJC. Exergy, exergoeconomic and environmental analysis of diesel engine operating with EGR rate. Int J Exergy. 2019;29(1):22–42.

    Article  CAS  Google Scholar 

  47. Ehyaei MA, Mozafari A. Energy, economic and environmental (3E) analysis of a micro gas turbine employed for on-site combined heat and power production. Energy Build. 2010;42(2):259–64.

    Article  Google Scholar 

  48. Krishna SM, Salam PA, Tongroon M, Chollacoop N. Performance and emission assessment of optimally blended biodiesel-diesel-ethanol in diesel engine generator. Appl Therm Eng. 2019;155:525–33.

    Article  CAS  Google Scholar 

  49. Gülüm M, Bilgin A. A comprehensive study on measurement and prediction of viscosity of biodiesel-diesel-alcohol ternary blends. Energy. 2018;148:341–61.

    Article  CAS  Google Scholar 

  50. Kumar BR, Saravanan S. Use of higher alcohol biofuels in diesel engines: a review. Renew Sustain Energy Rev. 2016;60:84–115.

    Article  CAS  Google Scholar 

  51. Kumar BR, Saravanan S, Rana D, Anish V, Nagendran A. Effect of a sustainable biofuel–n-octanol–on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes. Energy Convers Manag. 2016;118:275–86.

    Article  CAS  Google Scholar 

  52. Nour M, Attia AM, Nada SA. Improvement of CI engine combustion and performance running on ternary blends of higher alcohol (Pentanol and Octanol)/hydrous ethanol/diesel. Fuel. 2019;251:10–22.

    Article  CAS  Google Scholar 

  53. Atabani AE, Badruddin IA, Masjuki HH, Chong WT, Lee KT. Pangium edule Reinw: a promising non-edible oil feedstock for biodiesel production. Arabian J Sci Eng. 2015;40(2):583–94.

    Article  CAS  Google Scholar 

  54. Yeşilyurt MK, Cesur C. Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: a parametric optimization study through the Taguchi technique. Fuel. 2020;265:117025.

    Article  CAS  Google Scholar 

  55. Holman P. Experimental methods for engineers. 8th ed. New York, USA: McGraw-Hill; 2012.

    Google Scholar 

  56. Tian Z, Zeng W, Gu B, Zhang Y, Yuan X. Energy, exergy, and economic (3E) analysis of an organic Rankine cycle using zeotropic mixtures based on marine engine waste heat and LNG cold energy. Energy Convers Manag. 2021;228:113657.

    Article  CAS  Google Scholar 

  57. Yu X, Li D, Sun P, Li G, Yang S, Yao C. Energy and exergy analysis of a combined injection engine using gasoline port injection coupled with gasoline or hydrogen direct injection under lean-burn conditions. Int J Hydrog Energy. 2021;46(11):8253–68.

    Article  CAS  Google Scholar 

  58. Cavalcanti EJ. Energy, exergy and exergoenvironmental analyses on gas-diesel fuel marine engine used for trigeneration system. Appl Therm Eng. 2021;184:116211.

    Article  CAS  Google Scholar 

  59. Nabi MN, Rasul MG, Arefin MA, Akram MW, Islam MT, Chowdhury MW. Investigation of major factors that cause diesel NOx formation and assessment of energy and exergy parameters using e-diesel blends. Fuel. 2021;292:120298.

    Article  CAS  Google Scholar 

  60. Rai RK, Sahoo RR. Impact of different shape based hybrid nano additives in emulsion fuel for exergetic, energetic, and sustainability analysis of diesel engine. Energy. 2021;214:119086.

    Article  CAS  Google Scholar 

  61. Karthickeyan V, Thiyagarajan S, Ashok B, Geo VE, Azad AK. Experimental investigation of pomegranate oil methyl ester in ceramic coated engine at different operating condition in direct injection diesel engine with energy and exergy analysis. Energy Convers Manag. 2020;205:112334.

    Article  CAS  Google Scholar 

  62. Yildiz I, Caliskan H, Mori K. Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter. J Therm Anal Calorim. 2020;145:739–750.

  63. Caliskan H. Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renew Sustain Energy Rev. 2017;69:488–92.

    Article  Google Scholar 

  64. Özcan H, Çakmak A. Comparative exergy analysis of fuel additives containing oxygen and HC based in a Spark-Ignition (SI) engine. Int J Automot Eng Technol. 2018;7(3):124–33.

    Article  Google Scholar 

  65. Moran MJ, Shapiro HN, Boettner DD, Bailey MB. Fundamentals of engineering thermodynamics. Hoboken: John Wiley & Sons; 2010.

    Google Scholar 

  66. Yaman H, Doğan B, Yeşilyurt MK, Erol D. Application of higher-order alcohols (1-Hexanol-C6 and 1-Heptanol-C7) in a spark-ignition engine: analysis and assessment. Arabian J Sci Eng. 2021;46(12):11937–61.

    Article  CAS  Google Scholar 

  67. Doğan B, Yesilyurt MK, Erol D. Çakmak AA study toward analyzing the energy, exergy and sustainability index based on performance and exhaust emission characteristics of a spark-ignition engine fuelled with the binary blends of gasoline and methanol or ethanol. Int J Eng Res Dev. 2020;12(2):529–48.

    Google Scholar 

  68. Yesilyurt MK, Arslan M. Analysis of the fuel injection pressure effects on energy and exergy efficiencies of a diesel engine operating with biodiesel. Biofuels. 2019;10(5):643–55.

    Article  CAS  Google Scholar 

  69. Yesilyurt MK. The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters. Fuel. 2020;278:118319.

    Article  CAS  Google Scholar 

  70. Doğan B, Erol D, Yaman H, Kodanli E. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Appl Therm Eng. 2017;120:433–43.

    Article  CAS  Google Scholar 

  71. Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H, Dadak A. Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset. Waste Manag. 2019;87:485–98.

    Article  PubMed  Google Scholar 

  72. Lazzaretto A, Tsatsaronis G. SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy. 2006;31(8–9):1257–89.

    Article  CAS  Google Scholar 

  73. Khounani Z, Hosseinzadeh-Bandbafha H, Nazemi F, Shaeifi M, Karimi K, Tabatabaei M, Aghbashlo M, Lam SS. Exergy analysis of a whole-crop safflower biorefinery: a step towards reducing agricultural wastes in a sustainable manner. J Environ Manag. 2021;279:111822.

    Article  CAS  Google Scholar 

  74. Amid S, Aghbashlo M, Tabatabaei M, Karimi K, Nizami AS, Rehan M, Hosseinzadeh-Bandbafha H, Soufiyan MM, Peng W, Lam SS. Exergetic, exergoeconomic, and exergoenvironmental aspects of an industrial-scale molasses-based ethanol production plant. Energy Convers Manag. 2021;227:113637.

    Article  CAS  Google Scholar 

  75. Caliskan H. Environmental and enviroeconomic researches on diesel engines with diesel and biodiesel fuels. J Clean Prod. 2017;154:125–9.

    Article  CAS  Google Scholar 

  76. Meyer L, Tsatsaronis G, Buchgeister J, Schebek L. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy. 2009;34(1):75–89.

    Article  Google Scholar 

  77. Caliskan H, Mori K. Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy. 2017;128:128–44.

    Article  CAS  Google Scholar 

  78. Yesilyurt MK. The evaluation of a direct injection diesel engine operating with waste cooking oil biodiesel in point of the environmental and enviroeconomic aspects. Energy Sources Part A. 2018;40(6):654–61.

    Article  CAS  Google Scholar 

  79. Atabani AE, Kulthoom SA. Spectral, thermoanalytical characterizations, properties, engine and emission performance of complementary biodiesel-diesel-pentanol/octanol blends. Fuel. 2020;282:118849.

    Article  CAS  Google Scholar 

  80. Atabani AE, Mekaoussi M, Uguz G, Arpa O, Ayanoglu A, Shobana S. Evaluation, characterization, and engine performance of complementary fuel blends of butanol-biodiesel-diesel from Aleurites moluccanus as potential alternative fuels for CI engines. Energy Environ. 2020;31(5):755–84.

    Article  CAS  Google Scholar 

  81. Azad AK, Adhikari J, Halder P, Rasul MG, Hassan N, Khan MM, Naqvi SR, Viswanathan K. Performance, emission and combustion characteristics of a diesel engine powered by macadamia and grapeseed biodiesels. Energies. 2020;13(11):2748.

    Article  CAS  Google Scholar 

  82. Nanthagopal K, Kishna RS, Atabani AE, Ala’a H, Kumar G, Ashok B. A compressive review on the effects of alcohols and nanoparticles as an oxygenated enhancer in compression ignition engine. Energy Convers Manag. 2020;203:112244.

    Article  CAS  Google Scholar 

  83. Mathimani T, Kumar TS, Chandrasekar M, Uma L, Prabaharan D. Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel. Renew Energy. 2017;105:637–46.

    Article  CAS  Google Scholar 

  84. Devarajan Y, Babu Munuswamy D, Nagappan B. Emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends. Environ Sci Pollut Res. 2017;24(14):13136–41.

    Article  CAS  Google Scholar 

  85. Çakmak A, Kapusuz M, Özcan H. Experimental research on ethyl acetate as novel oxygenated fuel in the spark-ignition (SI) engine. Energy Sources Part A 2020;1–16 (in print).

  86. Devarajan Y, Munuswamy DB, Mahalingam A, Nagappan B. Performance, combustion, and emission analysis of neat palm oil biodiesel and higher alcohol blends in a diesel engine. Energy Fuels. 2017;31(12):13796–801.

    Article  CAS  Google Scholar 

  87. Devarajan Y, Munuswamy D, Nagappan B, Subbiah G. Experimental assessment of performance and exhaust emission characteristics of a diesel engine fuelled with Punnai biodiesel/butanol fuel blends. Pet Sci. 2019;16(6):1471–8.

    Article  CAS  Google Scholar 

  88. Bermúdez V, Lujan JM, Pla B, Linares WG. Effects of low pressure exhaust gas recirculation on regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine. Energy. 2011;36(9):5655–65.

    Article  CAS  Google Scholar 

  89. De Serio D, de Oliveira A, Sodré JR. Effects of EGR rate on performance and emissions of a diesel power generator fueled by B7. J Braz Soc Mech Sci Eng. 2017;39(6):1919–27.

    Article  CAS  Google Scholar 

  90. Mahalingam A, Devarajan Y, Radhakrishnan S, Vellaiyan S, Nagappan B. Emissions analysis on mahua oil biodiesel and higher alcohol blends in diesel engine. Alex Eng J. 2018;57(4):2627–31.

    Article  Google Scholar 

  91. Yuvarajan D. Investigation on effect of magnetite nanofluid on performance and emission patterns of methyl esters of bio diesel. J Environ Eng Landsc Manag. 2016;24(2):90–6.

    Article  Google Scholar 

  92. Elbayoumi M, Ramli NA, Yusof NFFM. Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2. 5–10 and PM2. 5 concentrations in naturally ventilated schools. Atmos Pollut Res. 2015;6(6):1013–23.

    Article  Google Scholar 

  93. Deep A, Kumar N, Karnwal A, Gupta D, Vibhanshu V, Sharma A, Patel JS. Assessment of the performance and emission characteristics of 1-octanol/diesel fuel blends in a water cooled compression ignition engine. SAE Tech Paper. No. 2014-01-2830, 2014.

  94. Sayin Kul B, Kahraman A. Energy and exergy analyses of a diesel engine fuelled with biodiesel-diesel blends containing 5% bioethanol. Entropy. 2016;18(11):387.

    Article  CAS  Google Scholar 

  95. Hoseinpour M, Sadrnia H, Tabasizadeh M, Ghobadian B. Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation. Energy. 2017;141:2408–20.

    Article  CAS  Google Scholar 

  96. Babu V, Murthy M. Butanol and pentanol: the promising biofuels for CI engines-a review. Renew Sustain Energy Rev. 2017;78:1068–88.

    Article  CAS  Google Scholar 

  97. Doğan B, Cakmak A, Yesilyurt MK, Erol D. Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: an approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses. Fuel. 2020;275:117973.

    Article  CAS  Google Scholar 

  98. Aghbashlo M, Tabatabaei M, Mohammadi P, Pourvosoughi N, Nikbakht AM, Goli SAH. Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Convers Manag. 2015;105:328–37.

    Article  CAS  Google Scholar 

  99. Aghbashlo M, Tabatabaei M, Mohammadi P, Mirzajanzadeh M, Ardjmand M, Rashidi A. Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. Renew Energy. 2016;93:353–68.

    Article  CAS  Google Scholar 

  100. Şanli BG. Energetic and exergetic performance of a diesel engine fueled with diesel and microalgae biodiesel. Energy Sources Part A. 2019;41(20):2519–33.

    Article  CAS  Google Scholar 

  101. Aghbashlo M, Tabatabaei M, Khalife E, Najafi B, Mirsalim SM, Gharehghani A, Mohammadi P, Shojaei TR, Khounani Z. A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part II–Exergetic analysis. Fuel. 2017;205:262–71.

    Article  CAS  Google Scholar 

  102. Şanli BG, Uludamar E, Özcanli M. Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel. 2019;258:116116.

    Article  CAS  Google Scholar 

  103. Aghbashlo M, Tabatabaei M, Mohammadi P, Khoshnevisan B, Rajaeifar MA, Pakzad M. Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. Energy Convers Manag. 2017;148:1–15.

    Article  CAS  Google Scholar 

  104. Çakmak A, Bilgin A. Exergy and energy analysis with economic aspects of a diesel engine running on biodiesel-diesel fuel blends. Int J Exergy. 2017;24(2–4):151–72.

    Article  Google Scholar 

  105. Şanli BG, Uludamar E. Energy and exergy analysis of a diesel engine fuelled with diesel and biodiesel fuels at various engine speeds. Energy Sources Part A. 2020;42(11):1299–313.

    Article  CAS  Google Scholar 

  106. Aghbashlo M, Tabatabaei M, Khalife E, Shojaei TR, Dadak A. Exergoeconomic analysis of a DI diesel engine fueled with diesel/biodiesel (B5) emulsions containing aqueous nano cerium oxide. Energy. 2018;149:967–78.

    Article  CAS  Google Scholar 

  107. Karagoz M, Uysal C, Agbulut U, Saridemir S. Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles. Energy. 2021;214:118830.

    Article  CAS  Google Scholar 

  108. Cavalcanti EJ, Carvalho M, Ochoa AA. Exergoeconomic and exergoenvironmental comparison of diesel-biodiesel blends in a direct injection engine at variable loads. Energy Convers Manag. 2019;183:450–61.

    Article  CAS  Google Scholar 

  109. Yildiz I, Açıkkalp E, Caliskan H, Mori K. Environmental pollution cost analyses of biodiesel and diesel fuels for a diesel engine. J Environ Manag. 2019;243:218–26.

    Article  CAS  Google Scholar 

  110. Devarajan Y, Munuswamy DB, Nagappan B, Pandian AK. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine. Heat Mass Trans. 2018;54(6):1803–11.

    Article  CAS  Google Scholar 

  111. E-Seesy AI, Waly MS, He Z, El-Batsh HM, Nasser A, El-Zoheiry RM. Influence of quaternary combinations of biodiesel/methanol/n-octanol/diethyl ether from waste cooking oil on combustion, emission, and stability aspects of a diesel engine. Energy Convers Manag. 2021;240:114268.

    Article  Google Scholar 

  112. Çalam A. Effects of the fusel oil usage in HCCI engine on combustion, performance and emission. Fuel. 2020;262:116503.

    Article  CAS  Google Scholar 

  113. Li B, Li Y, Liu H, Liu F, Wang Z, Wang J. Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends. Appl Energy. 2017;206:425–31.

    Article  CAS  Google Scholar 

  114. Chen Z, He J, Chen H, Geng L, Zhang P. Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol. Fuel. 2021;304:121360.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derviş Erol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors acknowledge that no financial interest or benefit has been raised from the direct applications of their research.

Ethical approval

Ethical approval for this study was not sought.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9498 kb)

Appendix

Appendix

See Fig. 

Fig. 21
figure 21

The graph of the fatty acid profile for canola oil biodiesel

21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, A., Yeşilyurt, M.K., Erol, D. et al. The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses. J Therm Anal Calorim 147, 11231–11259 (2022). https://doi.org/10.1007/s10973-022-11357-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11357-w

Keywords

Navigation